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-A FINAL REPORT
AFOSR CONTRACT NO F49620-82-K-0033

9/1/82 through 12/31/87

L Experimental Measurements and "Bulk Flow" Model Developments - D. Childs

The work conducted in this portion of the research contract has consisted of the
following tasks:

(a) the development of a facility and apparatus for measuring the leakage, axial pres-
sure profiles, and rotordynamic (stiffness and damping) coefficients of labyrinth
seals,

(b) the measurement of the test data cited above for a range of labyrinth-seal con-
figurations, and

U (c) the development and validation of "bulk-flow" models for the prediction of leakage
and rotordynamic coefficients of labyrinth seals.

All of these objectives have been met in full and are documented in the following journal
publications:

o Childs, D. W. and Scharrer, J. K., "Experimental Rotordynamic Coefficient and
Results for Teeth-On-Rotor and Teeth-On-Stator Labyrinth Gas Seals," ASME
Trans. J. of Engineering for Gas Turbine and Power, Vol. 108, October 1986,
pp. 599-604.

o Childs, D. W., Nelson, C. E., Nicks, C., Scharrer, J., Elrod, D., and Hale, K.,
WIl "Theory Versus Experiment for the Rotordynamic Coefficients of Annular Gas

Seals: Part 1-Test Facility and Apparatus", ASME Transaction Journal of Ti-
bology, July 1986, Vol. 108, pp. 426-432.

o Nelson, C., Childs, D., Nicks, C., Elrod, D., and Hale, K., "Theory Versus Exper-
iment for the Rotordynamic Coefficients of Annular Gas Seals: Part 2-Constant-3 Clearance and Convergent- Tapered Geometry," ASME Transaction Journal of
Tribology, July 1986, Vol. 108, pp. 433-438.

o Childs, D., and Scharrer, J., "An Iwatsubo-Based Solution for Labyrinth Seals -
Comparison to Experimental Results," ASME Transaction Journal of Engineer-
ing for Gas Turbine and Power, April 1986, Vol. 108, pp. 325-331.

o Childs, D. and Elrod, D., "Rotordynamic Coefficient and Leakage Test Results
for Interlock and Tooth-on-Stator Labyrinth Seals," accepted for presentation at
the ASME International Gas Turbine Conference, Amsterdam, The Netherlands,
under review consideration ASME Trans. for Power.

*%0!. .
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H. Finite Difference Developments and Results - D. Rhode

This portion of the research program involved the following tasks:

(a) the development of a 3-D finite difference computer code, using a generalized
body-fitted coordinate system, for predicting forces as well as the distribution of
various other flowfield quantities

(b) the development of a procedure for calculating the rotordynamic force for a seal
with any arbitrary number of cavities at an affordable CPU expenditure

(c) the computation of forces at various operating conditions

V These objectives have been met and are documented in the following:
* Rhode, D. L. and Hensel, S. J., "Three-Dimensional Computation of Rotordy-

namic Force Distributions in a Labyrinth Seal," accepted for presentation at the
ASME/AIAA First National Fluid Dynamics Congress, Cincinnati, OH, 24-28
July 1988.

* Rhode, D. L. and Hensel, S. J., "Labyrinth Seal Rotordynamic Forces Predicted
Z: with a Three-Dimensional Navier-Stokes Computer Code," accepted for presenta-

tion at the 24th AIAA/ASEE/ASME/SAE Joint Propulsion Conference, Boston,
MA, 11-14 July 1988.

* Rhode, D. L. and Nail, G. H., "Computation of Cavity-By-Cavity Flow Devel-
opment in Generic Labyrinth Seals," submitted for presentation at the ASME
International Computers in Engineering Conference, San Francisco, CA, 31 July
- 3 August 1988.

* Rhode, D. L. and Sobolik, S. R., "Simulation of Subsonic Flow Through a Generic
Labyrinth Seal," ASME Trans. Journal of Engineering for Gas Turbines and
Power, October 1986, Vol. 108, pp. 674-680.

* Rhode, D. L., Demko, J. A., Traegner, U. K., Morrison, G. L. and Sobolik, S. R.,
"Prediction of Incompressible Flow in Labyrinth Seals," ASME Trans. Journal

. of Fluids Engineering, March 1986, Vol. 108, pp. 19-25.

Appendix B contains three of the most recent papers:
* . Rhode, D. L. and Hensel, S. J., "Three-Dimensional Computation of Rotordy-

namic Force Distributions in a Labyrinth Seal," accepted for presentation at the
ASME/AIAA First National Fluid Dynamics Congress, Cincinnati, OH, 24-28

r...>.July 1988.

, Rhode, D. L. and Hensel, S. J., "Labyrinth Seal Rotordynamic Forces Predicted
* with a Three-Dimensional Navier-Stokes Computer Code," accepted for presenta-

tion at the 24th AIAA/ASEE/ASME/SAE Joint Propulsion Conference, Boston,
11-14 July 1988.

-"Rhode, D. L. and Nail, G. H., "Computation of Cavity-By-Cavity Flow Devel-
opment in Generic Labyrinth Seals," submitted for presentation at the ASME

5 International Computers in Engineering Conference, San Francisco, CA, 31 July
- 3 August 1988.



The following students have participated in this portion of the AFRAPT program:
Steve Sobolik, Steve Hensel, Greg Nail, and Robert Hibbs. Steve Hensel worked at Garrett,
one summer, finished his M. S. Thesis in December 1987 and is continuing his studies for a
Ph.D. A summer position was not available in time for Steve Sobolik and Greg Nail. Steve
finished his M. S. Thesis in August 1984 and went to work for Sandia National Labs. Greg
finished his M. S. Thesis in December 1987 and is continuing his education for the Ph.D.
degree. Robert Hibbs worked last summer at United Technologies in East Hartford and
will soon finish his M. S. Thesis.

We are grateful for the sponsorship of this research program by AFOSR. As with the
test facility, the computational capability continues to be unique throughout the world.
The value of this widely applicable predictive capabi!ity has clearly been demonstrated.
Also, previously unavailable values of various shear stress quantities have been computed,
which were particularly useful in refining the bulk-flow model mentioned in the previous
section.

Further work is important and should include an analysis of the effect of geometric
configuration including stepped seals, as well as the effect of rotor orbits whose centers are
eccentric with respect to the housing.

..................................
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Copies of the three most-recent publications are included in Appendix A.

e * Hawkins, L., Childs, D., and Hale, K., "Experimental Results for Labyrinth Gas
Seals with Honeycomb Stators: Comparisons to Smooth-Stator Seals and Theo-
retical Predictions," submitted for the 1988 ASME-ASLE Joint Tribology Con-
ference and ASME Journal of Tribology.

e Scharrer, J., "Theory versus Experiment for the Rotordynamic Coefficients of
Labyrinth Gas Seals: Part I - A Two Control Volume Model," Rotating Machinery
Dynamics, Vol. 2, ASME 1987, pp. 427-434, accepted for presentation, ASME
Journal of Vibration, Acoustics, Stress, and Reliability in Design.

J Childs, D. and Scharrer, J., "Theory Versus Experiment for the Rotordynamic
Coefficients of Labyrinth Gas Seals: Part II - A Comparison to Experiment,"
Rotating Machinery Dynamics, Vol. 2, ASME 1987, pp. 427-434, accepted for

Spresentation, ASME Journal of Vibration, Acoustics, Stress, and Reliability inDesign.

The AFRAPT participation in this program has included the students: Joseph Schar-
rer and Lawrence Hawkins. Joe worked at G.E. Lynn during the summer, completed his
Ph.D. in January 1987 and is continuing to work in rotating machinery with Rocketdyne.
Larry worked for Garrett during two summers, completed his M.S. degree in January 1988,
and is also going to work for Rocketdyne.

The support provided by AFOSR is deeply appreciated. The test apparatus we have
developed with AFOSR support continues to be unique in the world. The test results
and models have been of extraordinary value in resolving rotordynamics stability issues
and have been used directly to develop higher-performance commercial turbomachinery.
Considerable work remains to be done! No data or models are available yet for stepped
seals, see-through labyrinth seals at reduced L/D ratios, brush seals, etc.

S2
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Appendix A

Hawkins, L., Childs, D., and Hale, K., "Experimental Results for Labyrinth Gas Seals with
Honeycomb Stators: Comparisons to Smooth-Stator Seals and Theoretical Predictions,"
submitted for the 1988 ASME-ASLE Joint Tribology Conference and ASME Journal of
Tribology.

Scharrer, J., "Theory versus Experiment for the Rotordynamic Coefficients of Labyrinth
Gas Seals: Part I - A Two Control Volume Model," Rotating Machinery Dynamics, Vol. 2,
ASME 1987, pp. 427-434, accepted for presentation, ASME Journal of Vibration, Acous-
tics, Stress, and Reliability in Design.

Childs, D. and Scharrer, J., "Theory Versus Experiment for the Rotordynamic Coefficients
of Labyrinth Gas Seals: Part II - A Comparison to Experiment," Rotating Machinery
Dynamics, Vol. 2, ASME 1987, pp. 427-434, accepted for presentation, ASME Journal of

-* Vibration, Acoustics, Stress, and Reliability in Design.
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EXPERIMENTAL RESULTS FOR LABYRINTH GAS SEALS

WITH HONEYCOMB STATORS: COMPARISONS TO

SMOOTH-STATOR SEALS AND THEORETICAL PREDICTIONS'

LARRY HAWKINS, MEMBER TECHNICAL STAFF
ROCKETDYNE DIVISION, ROCKWELL INTERNATIONAL

CANOGA PARK, CA 91304

DARA CHILDS, PROFESSOR

KEITH HALE, RESEARCH ENGINEER

TEXAS A&M UNIVERSITY

COLLEGE STATION, TEXAS 77843

ABSTRACT

Experimental measurements are presented for the rotordynamic stiffness and damping
coefficients of a teeth-on-rotor labyrinth seal with a honeycomb stator. Inlet circumferential
velocity, inlet pressure, rotor speed, and seal clearance are primary variables. Results are
compared to (a) data for teeth-on-rotor labyrinth seals with smooth stators, and (b) ana-
lytical predictions from a two-control-volume compressible flow model. The experimental
results show that the honeycomb-stator configuration is more stable than the smooth-stator
configuration at low rotor speeds. At high rotor speeds, the stator surface does not affect
stability. The theoretical model predicts the cross-coupled stiffness of the hone ycomb-stator3 seal correctly within 251 of measured values. The model provides accurate predictions of
direct damping for large clearance seals; however, the model predictions and test results
diverge with increasing running speed. Overall, the model does not perform as well for low

* clearance seals as for high clearance seals.

INTRODUCTION

Modern turbomachines can be subject to problems due to unstable or self-excited
motion. This type of motion is characterized by a rotor whirling at a natural frequency
that is less than it. rotational speed. The unstable motion is caused by a tangential
force acting on the rotor in its whirl direction. Several excitation mechanisms have been
identified for unstable motion (Ehrich and Childs, 1984); one of these is the force developed
in a labyrinth seal.

'This work was supported in part by NASA Grant NAG3-181 from NASA Lewis Research
Center (Technical Monitor, Robert Hendricks) and AFOSR Contract F49620-82-K-0033
(Technical Monitor, Tony Amos)

N 1



-T T

2

Labyrinth seal forces are characterized by rotordynamic stiffness and damping coef-
ficients. For small motion of a seal rotor about a centered position, the rotordynamic

'C coefficients are defined by the following force-motion model

Fy -k .K Y -c)

11 where X and Y define the motion of the seal rotor relative to the seal stator, and Fx

and Fy are the reaction force components acting on the seal rotor. The rotordynamic
coefficients (K, k, C, and c) represent the direct stiffness, cross-coupled stiffness, direct
damping, and cross-coupled damping respectively.

This report presents experimental measurements of the rotordynamic coefficients for a
teeth-on-rotor labyrinth seal with a honeycomb stator. The first systematic test program
for measuring seal rotordynamic coefficients was performed at the Technical University
of Stuttgart (Benckert and Wachter,1978,1980),(Benckert,1980). Stiffness data were pub-

- lished for three types of seals: (a) teeth-on-stator, (b) teeth-on-rotor and stator, and
(c) teeth-on-stator and steps or grooves on the rotor. Wright (1983) published data on
equivalent radial and tangential stiffnesses for single-cavity, teeth-on-stator seals. Childs
and Scharrer (1986,1987) investigated teeth-on-rotor and teeth-on-stator labyrinth seals at

- Texas A&M University. They measured stiffness and damping coefficients while varying in-
let tangential velocity, rotor speed, inlet pressure, and clearance. Elrod and Childs (1988)

S.: investigated smooth-rotor/honeycomb-stator annular seals, and compared the results to
data for smooth-rotor/smooth-stator annular seals. They found the honeycomb-stator
seals to be more stable than smooth-stator seals throughout the range of variables tested.

The labyrinth-rotor/honeycomb-stator configuration was tested for several reasons:
(a) This combination is a common industrial configuration, (b) no test data for this com-
bination exists in the published literature, and (c) the results of Elrod and Childs (1988)
indicate that seals with honeycomb stators may have a stability advantage over smooth-

* stator seals. The last item motivates the comparison in this report of the honeycomb-stator
- seal data to the data of Childs and Scharrer (1987) for labyrinth-rotor/smooth-stator seals.
'" The honeycomb-stator seal data are also compared to the predictions of Scharrer's (1987)

theoretical model.

THEORY

* Stability Analysis

• As a consequence of equation (1), the radial and tangential forces acting on a seal
rotor, which is executing a circular orbit of amplitude A, are defined by

F, = -(K + cw)A

Ft r,=(k-Cw)A
o

--*- *-'.
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where w is the running speed. Thus, K and c produce a radial force on the seal rotor, and
k and C produce. a tangential force. The radial force F, in a labyrinth seal is normally
small compared to other radial fores acting on a rotor; therefore , K and c are of minor
consequence. If positive, the tangential force Ft is destabilizing since it supports the

-" whirling motion of a forward whirling rotor. Both k and C are positive for most practical
labyrinth seal applications; hence, the compelling reason for determining the rotordynamic
seal coefficients is to determine the relative values of k and C. The whirl frequency ratio,
defined by

f = k/Cw,

is used in this report to compare k and C. Reducing the value of f improves the stability
of a rotor system.

U
Scharrer's Analysis

Prediction of the rotordynamic coefficients requires a flow field model to predict the ax-
ial and circumferential pressure distribution acting on the seal rotor. Most early attempts
to model the flow field in a labyrinth seal used a single control volume, concentrating on

-; the circumferential flow components. However, the labyrinth seal is known to have two
distinct flow regimes: a jet flow region in the leakage path and a recirculation region in the
cavity. Hence, Fujikawa et al. (1984), Wyssmann et al. (1984), and Scharrer (1987) have

- developed two-control-volume analyses to accurately model the known physics of the flow.
Scharrer's model is used in this report to generate theoretical predictions for comparison

. to experimental data.

In Scharrer's model, the shear stresses at the rotor and stator surfaces (r. and r) are
modeled using the Blasius formula for turbulent pipe flow

_ 1 '..o (UnDh)rn°

2 .PUn O()

where Urn is the mean flow velocity relative to the surface upon which the shear stress is
cting, and Dh is the hydraulic diameter of the particular control volume. No published

data are available for the friction cueflicients, no and mo, for the honeycomb-stator surface
. used in the 'ests reported here. The following values were determined empirically from

pressure drop versus flow tests for smooth-rotor/honeycomb-stator seals

ms = -0.1083 ns = 0.2820.

Scharrer uses a perturbation analysis to linearize the governing equations. Expanding
'" the governing equations in the perturbation variables yields a system of twelve linear

algebraic equations per cavity. Solution of these equations yields the pressure distribution
along and around the seal. Integration of the pressure distribution leads to the solution

*: for the rotordynamic coefficients.

.........
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TEST APPARATUS

. The test results reported here were obtained using the Texas A&M Air Seal Test
Apparatus. The test apparatus will be described here briefly. A detailed description was
provided by Childs et al. (1986). As illustrated in figure 1, the rotor shaft is suspended,
pendulum fashion, from an upper, rigidly-mounted, pivot shaft. This arrangement allows
horizontal (harmonic) motion of the rotor. A cam within the pivot shaft provides vertical
(static) positioning of the rotor. The rotor is excited, horizontally, by a hydraulic-shaker
head which acts on the rotor-shaft housing. The design of the test rig, which is further
illustrated in figure 2, permits the installation of various rotor/stator combinations. The
test apparatus has been modified since the 1986 reference to-permit an increase in top
operating speeds from 8,000 to 16,000 cpm. Changes include the use of a hydraulically
fitted rotor, the introduction of high-speed carbon seals, and the replacement of a roller-
element thrust bearing with a Torrington, water-lubricated, swing-pad bearing. The stator
of figure 2 is supported in the test section housing by three piezo-electric, quartz, load cells
in a triheral configuration. These load cells measure the pressure-induced forces due to

0* "rotor motion within the stator. Accelerometers are provided on the stator to correct for
acceleration-induced forces which are measured by the load cell.

TEST PARAMETERS

5 The parameters varied during the tests were supply pressure, rotor speed, circumfer-
ential velocity of the inlet air, and seal configuration. Test results for six teeth-on-rotor
labyrinth gas seal configurations are presented. Three of the seals have honeycomb stators,

each with a different rotor-to-stator clearance. The other three seals have smooth stators,
each wluh a clearance equal to one of the honeycomb-stator seals. The seals are illustrated

in figure 3. Seals 1, 2, 3, and 4 were tested for this study, and the data for these seals are
reported here for the first time. Seals 5 and 6 were tested previously and documented by
Childs and Scharrer (1987). The data are presented here again to provide comparison to
the corresponding honeycomb stator seals (seals 2 and 3).

. The test points for the other three variables are shown in table 1. The inlet air
pressure and attendant mass flow rate through the seal are controlled with a flow control
valve located upstream of the seal. Rotor speed is controlled by a variable speed electric
motor with a frequency controller. The inlet circumferential velocities are controlled using

the inlet guide vanes shown in figure 4. The guide vanes are contained in sleeves and located
- immediately upstream of the test seal. The no-prerotation case is obtained without guide

vanes. High and low prerotation velocities are obtained for the different, guide-vane-depths
A of figure 4. The inlet circumferential velocity is calculated from measured values for the
volumetric flow rate, upstream temperature and pressure, and a flow-turning correction
in accordance with Cohen et al. (1972). The circumferential velocity can not be varied
arbitrarily, because it depends on the supply pressure and the flow resistance of the seal
being tested. The inlet circumferential velocity set points for each seal are shown in table
2. Inlet circumferential velocity varies a maximum of - 10% with supply pressure and

re oreA



rotor speed from the values in table 2. When reviewing the following test results, figure
3, table 1, and table 2 should be consulted for the definitions of symbols used. Also, note

that circumferential velocity ratio is used to represent inlet circumferential velocity; this

is the ratio of inlet circumferential velocity to rotor surface speed.

As noted in table 2, the inlet circumferential velocity test point varies significantly

when seal clearance is varied. Therefore, the rotordynamic coefficients cannot be plotted
versus clearance because the variation in inlet circumferential velocity with clearance would

affect the results. The effect of clearance is displayed by plotting the coefficients versus
inlet circumferential velocity for each seal on the same plot. This procedure allows only
one rotor speed and one supply pressure per plot.

The uncertainty of the rotordynamic coefficients was calculated using the method
described by Holman (1978). For the seal configurations tested, the maximum uncertainties

in the stiffness and damping coefficients were 15 N/mm (86 lb/in) and 32 N-s/m (0.18 Ib-
s/in), respectively. The uncertainty in the cross-coupled damping coefficients are of the
same order of magnitude as the coefficients themselves; therefore, cross-coupled damping
data are not presented here.

TEST RESULTS

Honeycomb-stator seal data are compared to smooth-stator seal data in figures 5-12.
In these figures, solid lines represent the hone ycomb-stator test results and broken lines
represent the smooth-stator test results. The smallest clearance seals (seals 1 & 4) and the
highest inlet circumferential velocity (swirl 3) are used for plots in which these parameters

*,are not varied. Further data are presented by Hawkins (1988).

Leakage

Leakage is represented by the flow coefficient,

'. ~rh V-

7rDCrP"

" Figure 5 is a plot of flow coefficient versus seal clearance for an inlet pressure of 3.08 bar

and a rotor speed of 3000 cpm. Curve 1 represents the honeycomb-stator seals and curve 4
represents the smooth stator seals. Leakage did not vary with inlet circumferential velocity,
thus the data presented are for inlet circumferential velocity 3 only. Examination of the
figure reveals that the honeycomb-stator seal leaks more at the smallest clearance and
the smooth-stator seal leaks more at the largest clearance. This result is consistent with
Stocker et al. (1977). One would expect the honeycomb-stator seal to leak less than the
smooth-stator seal because its greater roughness increases the flow resistance. However,

in the honeycomb-stator seal, part of the leakage air may bypass the apparent flow path
by passing into and out of honeycomb cells. Thus, relative to the smooth-stator seal, the

honeycomb-stator seal has a larger effective leakage area for a given clearance. When the
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clearance is small, the increased leakage area results in greater leakage in the honeycomb-

stator seal versusthe smooth-stator seal.

Figure 6 is similar to figure 5, except that leakage is represented by the dimensional
mass flow rate. This figure shows that leakage increases as clearance increases.

Direct Stiffness

Direct stiffness is plotted versus rotor speed for various pressures in figure 7. Again,
the solid lines are for the smallest clearance honeycomb-stator seal, and the broken lines
are for the smallest clearance smooth-stator seal. Direct stiffness of the honeycomb-stator
seal is negative and becomes more negative as rotor speed increases. The smooth-stator
seal has a similar characteristic, but has a larger direct stiffness magnitude. Direct stiffness
becomes more negative as pressure increases for both stator surfaces.

Cross-Coupled Stiffness

Cross-coupled stiffness is plotted versus rotor speed for various pressures in figure 8.
Cross-coupled stiffness increases with rotor speed for both seals. For the honeycomb-stator

seal, cross-coupled stiffness is negative at low speed and increases to about 300 N/mm at

the highest rotor speed. For the smooth stator seal, cross-coupled stiffness has a small
positive value at low rotor speeds, increasing to about 350 N/mm at the highest rotor
speed. Due to the results of Elrod and Childs (1988), cross-coupled stiffness was expected

-.'.'. to be less positive for the honeycomb-stator seal compared to the smooth-stator seal for all

rotor speeds. The data show that the cross-coupled stiffness of the two seals have similar

magnitudes at high rotor speeds. This plot also shows that increasing pressure increases
S..the absolute value of cross-coupled stiffness.

Figure 9 illustrates cross-coupled stiffness versus circumferential velocity for the three
honeycomb-stator seals (1, 2, 3) and the three smooth-stator seals (4, 5, 6). Figure 9(a)

is for an inlet pressure of 3.08 bar and rotor speed of 3000 cpm, and figure 9(b) is for
the same pressure and rotor speed of 16,000 cpm. Figure 9(a) shows that cross-coupled
stiffness increases roughly linearly as inlet circumferential ratio increases for both stator
surfaces. The increase is greater with the smooth-stator seal. In figure 9(b), cross-coupled
stiffness increases significantly from zero inlet circumferential velocity to the first positive

* value of inlet velocity; however, from the first positive inlet velocity to the second positive
inlet velocity, the cross-coupled stiffness increases only slightly or in some cases decreases.
This trend is present for both stator surfaces. Returning to figure 9(a), for the honeycomb-

stator seal, cross-coupled stiffness is much lower in the small clearance seal (seal 1) than
in the larger clearance seals (seals 2 & 3). Increasing seal clearance has little effect on the

* cross-coupled stiffness of the smooth-stator seal. At the higher rotor speed (figure 9(b)),
-' seal clearance has little effect on cross-coupled stiffness in the honeycomb-stator seal. The

small clearance smooth-stator seal (seal 4) has a much higher cross-coupled stiffness than

0
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the larger clearance seals (seals 5 & 6). Note that cross-coupled stiffness of the larger
clearance smooth-stator seals does not depend on rotor speed.

Direct Damping

Direct damping is plotted versus rotor speed for various pressures in figure 10. Direct
damping has essentially the same magnitude for either stator surface. However, damp-
ing for the honeycomb-stator seal first increases and then decreases with increasing rotor
speed, while damping in the smooth-stator seal does not depend on rotor speed. Also,
damping increases with pressure for both stator surfaces, but the increase is greater in the
honeycomb-stator seal.

Figure 11 is a plot of direct damping versus inlet circumferential velocity ratio for each
seal conliguration. Damping does not have a clear dependence on inlet circumferential
velocity in the honeycomb-stator seals, but increases with increasing inlet circumferential
velocity in the smooth-stator seals. Damping increases somewhat from seal 1 (the smallest
clearance seal) to seal 2. However, damping in seal 2 and seal 3 is roughly the same. In
the smooth-stator seal, damping first falls and then rises as clearance increases. This plot
is for pressure of 3.08 bar and rotor speed of 3000 cpm. The same trends are repeated at
other inlet pressures and rotor speeds.

Whirl Frequency Ratio

Figure 12 is a plot of whirl frequency ratio versus rotor speed for the three honeycomb-
stator seals and the three smooth-stator seals. As noted previously, lower values of whirl
frequency ratio indicate a more stable seal. Note that at the lower rotor speeds, each
honeycomb-stator seal is more stable than the comparable smooth-stator seal, and that
for a particular stator surface, the small clearance seals are more stable than the larger
clearance seals. At the higher rotor speeds, stator surface does not significantly affect
stability. Also, the small clearance seals (seals 1 & 4) are less stable than the others at the
higher speeds.

COMPARISON TO THEORY

Data for the honeycomb-stator seals are compared to the predictions of Scharrer's
model in figures 13-16. The experimental data are represented by solid lines and theoretical
predictions are represented by broken lines in each figure.

Cross-Coupled Stiffness

Figure 13 is a plot of cross-coupled stiffness versus rotor speed for various pressures
• .for the smallest clearance seal. The theory correctly predicts that cross-coupled stiffness
*rises as rotor speed rises. The theory does not predict the negative values found at low

'p'
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rotor speeds. In general, the model predicts positive values of cross-coupled stiffness cor-
rectly within 25%. Figure 14 is a plot of crt-.s-coupl.d stiffness versus inlet circumferential
velocity ratio for the three honeycomb-stator seals. The model predicts a larger rise in
cross-coupled stiffness with increasing circumferential velocity than is shown in the ex-

* perimental data. The model also predicts little increase in cross-coupled stiffness with
increasing clearance.

.Direct Damping

Direct damping is plotted versus rotor speed for various pressures in figure 15. The
model predicts that damping increases with increasing rotor speed, whereas the data show
that damping first increases and then decreases with increasing rotor speed. The model
consistently underpredicts the magnitude of the damping at low rotor speeds, and is accu-
rate at high rotor speeds. However, at the highest rotor speeds tested, the model predic-
tions and the test results are diverging. Figure 16 is a plot of direct damping versus inlet
circumferential velocity ratio for the three honeycomb-stator seals. The model correctly
predicts that damping does not depend on inlet circumferential velocity ratio. The model
also predicts that damping does not increase significantly as clearance increases. This is
true only at the larger clearances.

• . CONCLUSIONS

The test data support the following conclusions for the labyrinth-rotor/honeycomb-

stator seals:

1) Cross-coupled stiffness is generally positive. Cross-coupled stiffness increases with
rotor speed and with inlet circumferential velocity. At the lower rotor speeds, cross-

-'- coupled stiffness is much lower for the smallest clearance seal than for the other two

seals. At the higher rotor speeds, cross-coupled stiffness is approximately the same
value regardless of clearance.

2) Direct damping is positive, and is much lower in the smallest clearance seal than in
the two larger clearance seals.

",p.-

By comparing the results for the honeycomb-stator and smooth-stator seals, the fol-
* *lowing conclusions may be drawn:

1) The honeycomb-stator seals leak more than the smooth-stator seals when the clearance
is small. The honeycomb-stator seals leak less when the clearance is large.

" 2) The honeycomb-stator seal is more stable at low rotor speeds. For high rotor speeds
stator surface does not affect stability.



.

By comparison of experimental results and theoretical predictions for honeycomb-.
stator seals, the following conclusions may be drawn:

1) The model does not predict the negative values measured for cross-coupled stiffness
at low rotor speeds.

2) The model consistently predicts the positive values of cross-coupled stiffness of theii honeycomb-stator seal correctly within 25% of the measured values. The model cor-
rectly predicts the weak dependence of cross-coupled stiffness on clearance for the
larger clearances.

3) The model incorrectly predicts that direct damping increases with speed, and does
not predict the decrease in damping at small clearance. For the two larger clearance
seals the model produces good results for tested rotor speeds above 12,000 cpm. Below
12,000 cpm, the model underpredicts direct damping by 50%.

In general, Scharrer's model gives useful results for cross-coupled stiffness in the
labyrinth-rotor/honeycomb-stator seal for the range of variables tested. Scharrer's model
can give useful results for direct damping in the labyrinth-rotor/honeycomb-stator seal by
applying a rotor-speed correction factor to the predicted damping. Overall, the model
produces better results for the larger clearances. The increased significance of unmodeled
effects at smaller clearances - such as the unmodeled leakage path through the honey-
comb cells - is probably responsible for the reduced performance of the model at smaller
clearances.

Values of the rotordynamic coefficients for the two larger clearance seals tend to be
much closer together than to the smaller clearance seal. This is true for both the labyrinth-
rotor/honeycomb-stator seal and for the previously untested smallest clearance labyrinth-
rotor/smooth-stator seal. Since there are many practical applications where labyrinth seals
are used with clearances below the tested range, further testing with smaller clearances
are required.

b.
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NOMENCLATURE

C, c Direct and cross-coupled damping coefficients (Ft/L)

Cr Radial clearance (L)
D Rotor diameter (L)
F Seal reaction-force magnitude (F) "
K, k Direct and cross-coupled stiffness coefficients (FIL)
f Whirl frequency ratio
Th Leakage mass flow rate (MILt)
"ms, ns Friction coefficients
P Fluid pressure (F/L 2 )
R Gas constant for air (L 2 /Tt 2 )
T Fluid temperature (T)
X, Y Rotor-to-stator relative displacement components (L)
V Kinematic viscosity (L 2 /t)

p Density of fluid (M/L2 )
w Shaft angular velocity (l/t)

Subscripts

r Reservoir value, radial component
SSump value
t Tangential component

%-

p.-.

* V.

# 5 -

* ' -



Table 1. Definition of symbols used in figures.

Supply Pressure Rotor Speeds Inlet Circumferential Velocities

1 - 3.03 bar 1 - 3,000 cpm 1 - Zero circumferential velocity
S 2 - 4.46 bar 2 - 6,000 cpm 2 - Low velocity with rotation

3 - 5.84 bar 3 - 9,500 cpm 3 - High velocity with rotation
4 - 7.22 bar 4 -13,000 cpm
5- 8.25 bar 5- 16,000 cpm

Table 2. Inlet circumferential velocity set points.

Seal Circumferential Velocity (m/s)
Swirl I Swirl 2 Swirl 3

1 0.0 14.9 38.7
2 0.0 20.9 56.3
3 0.0 24.6 64.1
4 0.0 10.3 28.1
5 0.0 22.8 59.9
6 0.0 28.7 76.3

.A -
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THEORY VERSUS EXPERIMENT FOR THE
ROTORDYNA IC COEFFICIENTS OF LABYRINTH GAS SEALS:

PART I - A TWO CONTROL VOLUME MODEL'

JosEf, K. SCHANtER
3MECHANICAL ENGINEERING DEPARTMENT

TEXAS A&M UNmivsrrY
COLLEGE STATION, TEXAS 77843

SUMWARY
The basic equations are derived for a two-control-volume model for compreusible flow in a labyrinth seal. The
recirculation velocity in the cavity is incorporated into the model for the st time. The tow is assumed to
be completely turbulent and isoenergetic. The wall friction factors are determined. using the Blasius formula.
Jet Row theory s used for the calculation of the recirculation velocity in the cavity. Linearised seroth and

C first-order perturbation equations are developed for small motion about a centered position by an expansion
in the eccentricity ratio. The seroth-order presure distribution is found by satisfying the leakage equation
while the circumferential velocity distribution is determined by satisfying the momentum equations. The
first-order equations are solved by a separation of variable solution. Integation of the resultant pressure
distribution along and around the seal defines the reaction force developed by the seal and the corresponding
dynamic coefficients.

g NLTRODUCTION
The problems of instability and synchronous response in turbomachines have arisen recently because of
the trends in design toward greater efficiency with higher performance. To achieve these design goals, the

. machines are designed for higher speeds, larger loadings, and tighter clearances. As loading are increased
and clearances decreased, Ruid forces increase and can lead to unstable or self-excited vibrations. One of
the rotordynamic force mechanisms which has been shown to cause self-excited vibration and synchronous
response in centrifugal compressors is that of the forces developed by labyrinth seals.

The low in a labyrinth seal has been shown by experiment 1ll and calculation (2,3,41 to be comprised of two
flow regimes: a jet flow region in the leakage path and a recirculating velocity region in the cavity itself (see
figure 1). The first attempts at analysis of this system neglected the axial velocity components in the flow

- and concentrated on the circumferential components. This was the single-control-volume approach, used in
refs 15,S]. In an attempt to improve upon the results of these analyses, the two-control-volume approach
was introduced. The most notable of the two-contrl-volume analyses is that of Jenny et al. 171. Jenny et
&L. 17] used the two-control-volume approach in conjunction with a 2-D CFD solution to the Navier-Stokes
equations to account for the free shear stress between the jet fow and the cavity fow. However, they
neglected the reaculating velocity in the cavity and assumed the flow to be incompressible. Further, the

.. present author obtains different signs in the expansion of the continuity equation and different perturbation
equations. Theme discrepancies are explained in detail in Appendix D. The theory of Jenny et al 17) showed
substantial improwement in the prediction of stiffness and damping coefficients, but in the end, correction
factors had to be incorporated into the calculation of the shear strew to improve the correlation with test
data.

This paper introduces the cakulation of the recirculation velocity into the analysis. The model for the
recirculation velocity, U2, used here is illustrated in figure 2. This velocity component is important in the
calculation of the cavity shear stresses. The focus is on the shear streses, because experimental result 18)
have shown that the stiffness and damping coefficients are very sensitive to the circumferential velocity in the
seal. In the control volume analysis to be presented, the solution to the circumnferential momentum equation

'This work was supported in part by NASA Grant NAS3-181 from NASA Lewis Research Center (Technical
Monitor, Robert Hendricks) and AFOSR Contract F49820-82-K-0035 (Technical Monitor, Tony Amos)
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yields the circumferential velocity in the seal. An improvement in the shear stress calculation will yield an
improvement in the calculation of the stiffness and damping coefficients. The CFD result, of Rhode 12,31 are
used to evaluate the mqdel - for shear stress and recirculation velocity used in this paper. The results of this
analysis are compared to a new set of experimental results for teeth-on-rotor and teeth-on-stator labyrinth
seals in Part 2 of this paper.

% CONTROL VOLUME MODELLING
N Before proceeding with the solution development, the approach taken in modelling the flow will be discussed.

As mentioned previously, the flow in a labyrinth seal is known to have two distinct regions: a jet flow region
*in the leakage path and a recirculating flow region in the cavity itself (see figure 1). Therefore, a two-control-

volume model seems appropriate. The choice of control volumes is between the *box-in-@,bx model (see
figure 3) of Jenny et al. 17) or a more conventional model with a control volume for the jet flow and one
for the recirculating flow in the cavity, as shown in figure 2. The two-separate-control-volume model was
chosen since it is suggested by the known physics of the flow. The flow enters the seal and separates into
two distinct flow regions which are separated by the dividing streamline.

The final question is whether the control volumes should be defined using a geometric boundary or using
the dividing streamline as the boundary. The dividing streamline approach seems, at first, to be the obvious
choice. The governing equations would be simplified by the restriction of no flow acro a streamline, the
free shear stres relations are derived for flow along the dividing streamline, and the solution for the velocity
of the recirculating flow may be derived for flow along the dividing streamline. Despite these advantages, the

* dividing streamline approach was not used, due to mathematical constraints. The mathematical limitations
of the dividing streamline approach are dealt with in detail by Scharrer 19). The geometric boundary approach
relies on the amumption that the dividing streamline makes a small angle with the horisontal. As will be
shown, this is a good assumption which laas been verified experimentally. The geometric boundary approach
and solution is provided in the following section.

GEOMETRIC BOUNDARY APPROACH
Assumptions

(1) The fluid is considered to be an ideal gas.
(2) Pressure variations within a chamber are small compared to the pressure differences across a seal

strip.
(3) The lowest frequency of acoustic resonance in the cavity is much higher that that of the rotor speed.
(4) The eccentricity of the rotor is small compared to the radial seal clearance.
(5) Although the shear stress is sig.ificant in the determination of the flow parameters (velocity etc. ),

the contribution of the shear stress to the forces on the rotor are negligible when compared to the pressure
forces.

Zf. (6) The cavity flow is turbulent and isoenergetic.
(7) The recirculation velocity, U2, is unchanged as it swirls within a cavity.

"; Procedure
The analysis presented here is developed for the teeth-on-rotor 'see-through' labyrinth seal shown in figure 5.
The equivalent equations for the teeth-on-stator labyrinth seal are given in Appendix A. The continuity and
circumferential momentum equations will be derived for the two-control-volume model shown in figures 2,6,7

and 8. A leakage model will be employed to account for the axial flow. The governing equations are liearied
* using a perturbation analysis for small motion about a centered position. The seroth-order continuity and

momentum equations will be solved to determine the steady state pressure, axial and circumferential velocity
*. for each cavity. The first-order continuity and momentum equations will be reduced to linearly independent,

algebraic equations by assuming an elliptical orbit for the shaft and a corresponding harmonic response for
the pressure and velocity perturbations. The force coefficients for the seal are found by integration of the
first-order pressure perturbation along and around the shaft.

GOVERNING EQUATIONS
Continuity Equation
The control volumes of figures 2 and 6 have a unity circumferential width. Their continuity equations are:

0 :;. i. i.iii.. ?( . ?4;;. i . ° ;. .,. .q%..-....'



ajpA, aoW, A I++ 0
at Reiae +

8pA2 _ pW2A2at+ R, :o(2)
For the teeth-on-rotor case, Al =LCr, A2 = LB, Raj = Re, and R82 = Rs + B.

Momentum Equations
The following momentum equations for control volumes I and II are derived using figures 7 and 8 which
show the pressure forces and shear stresses acting on the control volumes.

apWA+ 2pW 1A1 8W -pW LAI + WA 1 Op + rn4Wi

at Re at Rol O Rol 88

k+ I .W1  - = a s +r,Li- w. aL (3)

OpW 2A2  2pW 2A2 OW2  pW2 GA2  W2A2Bp
.'W2 + +W IA + WAa

at ReZ2  0 Rs2 a9 R 2 a9

+ A2 LA _e l-. + r, anri (4)
where ar and as are the dimensionless length upon which the shear stresses act and are defined for the

teeth-on-rotor labyrinth by

a., = a, = (2 + Lq)IL. (5)

W. is the circumferential velocity between the control volumes.

Blauius 110] determined that the shear stresses for turbulent low in a smooth pipe could be written as

12 VUD

where U. in the mean Bow velocity relative to the surface upon which the shear stress i acting. The constants
mo and no can be empirically determined for a given surface from pressure Low experiments. However, for
smooth surfaces the coefficients given by Yamada fll for turbulent Low between annular surfaces are:

13 0= -0.25 fto = 0.079

' Applying Blasius' equation to the labyrinth rotor surfaces Yields the following definitions for the rotor shear
stress in the circumferential direction. Note that the recirculation velocity, U2 , is included in the definition
of the total velocity acting on the rotor.

-T) +U (RS2 W~- W 2 )nr (VR 2 W~-W 2 T2) -fD~ M+ (6)

where Dh2i is the hydraulic disinter of control volume II, defined by

A; = 2B L1/(B, + Li) (7)

Similarly, the stator shear stree in the circumferential direction is:

1 I - ~ r (v ? UDhli).= ~ W +UW e, ()
T o W i n s o , ( 8 )

. - . - .- , - - . - . , , '., . . .. - . . ... . . . . . , ,
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where Dhl. is the hydraulic diameter of control volume I, defined by

DI, = 2CrL/(Cr, + L,) (9)

and the axial velocity, UI1, is

U1 = ,+,/PCr, (10)

Figure 9 shows a comparison of the predictions from equation (8) and CFD results for stator wall shear stressk for seal A of table 1. The figure shows that the comparison is very good. Similar results are obtained for the
other seals of table 1. Figure 10 shows a comparison of rotor wall-shear-stress predictions from equation (6),
CFD and averaged CFD for seal A of table 1. The averaged CFD results is used here for comparison since
the bulk flow model yields a single averaged result for cavity shear stress and is not capable of modelling
the complex flowfield.The figure shows that the prediction of equation (6) is close to the CFD results.The
dips in the CFD results are the lower corners of the cavity. Similar results are obtained for the other seals
of table 1.

Table 1. Seal geometries calculated by Rhode.

Seal

A B C D
Re 72.5043mm 72.5043mm 72.5043mm 41.780mm
B 3.175mm 3.175mm 3.175mm 0.889mm
L 3.175mm 3.175mm 3.969mm 0.8585mm
Tp 0.35mm 0.35mm 0.35mm 0.15mm
Cr 0.4064mm 0.508mm 0.508rmm 0.2159mm

The flow across a labyrinth tooth is very similar to the flow of a turbulent jet issuing from a slot. The problem
with using jet-flow results for labyrinth seas is that current jet-flow theory only considers the flow of ajet with
a coflowing stream or a crosaflowing stream, not both. In the following derivation, the relationships given by
Abramovich 1121 for the velocity profile of a semi-contained, one-dimensional, turbulent jet with a coflowing
stream are assumed to apply for the two-dimensional labyrinth seal flow. According to Abramovich 1121, the
velocity profile for such a flow can be shown to fit the following function when compared to experimental
results:

"= ", + (V2 -l (1).

where the coordinate y, the mixing thickness b, and the boundary layer thickness y are defined in figure
11. The relationship between the boundary layer thickness and the mixing thickness was found [12] by

.comparison to experiment to be:

y/b = 0.584 - 0.134(v2/vi) (12)

Once the velocity ratio across the dividing streamline, t2/v1 , is found, equation (12) reduces to a constant.

The total free shear stress is found using Prandtl's mixing length hypothesis [131:

~V If \ (13)fit 1.i~
where the mixing length, 1, for a labyrinth seal, has been determined from the calculations of Rhode 12,3] to
be:

t 0.275b (14)

Table 1 shows the seal geometries calculated by Rhode 12,3]. The mixing length, t, given in equation (14)
ias the most sensitive factor in this solution. The large magnitude of the mixing length shows the high

=% %
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turbulence level of the labyrinth flow as compared to similar flows. The typical values given for the mixing
lengths of rectangular and round jet tows, in one dimension, are in the range of 0.07 to 0.09. Without the
CFD results, one of these values would have to be used and the results of using I/b in the range 10.07,0.091
would have been disappointing.

Jenny at al. 171 used a 2-D CFD code to obtain a correlation for lb as a function of clearance and tooth
" geometry. Their relation is shown below for the teeth-on-rotor case:

l= 0.055(l + 1.osCrIL + .08 /i;T* ) (15)

However, their shear strew relation neglected the recirculating velocity component, U2 . Upon comparison
with the data of Rhode 12,31, the mixing length ratio, 1/b, was found to be relatively constant when the
shear stress in calculated using all velocity components.

Substituting the differentiated version of equation (11) and equation (14) into equation (13) yields an ex-
pression for the total free shear stress. At the interface of the two control volumes (y--O), the total free shear
stress is:

fi .68PI(t2- -V']) I (

The circumferential component of the free shear stress is:

+-. 1.6 2

,, = -068pP7(W - WI)+ (U2 - U()2 (W 2 - WI) - (17)

The circumferential component of velocity at the interface, W,,, is obtained from equation (11).

Ki W +. (W2 -W'I) 1[.-2,'1
Equations (16,17,18) are all valid along the dividing streamline. Since the control volumes are defined
geometrically and not by the dividing streamline, the shear stress calculated using the above equations is
assumed to be close to that existing along the geometric boundary line. This is a good assumption considering
that the angle of the dividing streamline from the horisontal has been found experimentally to be on the
order of 6 degrees by several investigators 114,15].

The analysis to this point is incomplete in that the recirculation velocity, U2 , and the relationship between
the mixing thickness and the boundary layer thickness, y2/6, are undefined. The following section presents
the jet low theory used to determine the recirculation velocity, U2, and subsequently ht/b. The discussion
is rather lengthy, but the final result is relatively simple.

Determi"atio of the recirculaion seloci
As mentioned previously, there is no closed-form solution for the fowfield present in a labyrinth seal cavity.
The low is highly three dimensional and completely turbulent. An approximation for the velocity profile
can be obtained using the theory for the low of a two-dimensional, turbulent, isoenergetic, half-infinite jet.
Figure 12 shows the model for this theory. The low is assumed to enter with one velocity component, in the
x-direction, and spread into the cavity developing a y-component of velocity. The model doe4 not account
for the circumferential velocity component which, is the same order of magnitude as the axial velocity, in a
labyrinth seal towfield. The solution procedure involves solving the infinitewsimal form of the x-momentum
equation for the dimensionless velocity profile and then solving the integral form of the continuity and
momentum equations in order to determine the dimensionless velocity along the dividing streamline.
The following is a summary of the derivation of the equations necessary to determine the dimensionless
velocity along the dividing streamline. A complete discussion of thi theory can be found in Korst et al. 1161
and Scharrer (9]. The following derivation uses the assumption that the curvature in the dividing streamline
is small. The inhmitesinal form of the x-momentum equation which has been reduced using the continuity
equation is:
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au au a (8pu\JO- (Z + I y F 78:" ''a +ea= a =o (19)

where e is the apparent (turbulent) kinematic viscosity and the x and y velocity components, u and v,
respectively, are time averaged. Since the Row illustrated in figure 12 is a quasi-one-dimensional jet flow
where there is little or no initial vertical velocity component, equation (19) can be linearized using a small
perturbation method. The following simplified equation of motion is obtained:

,..au, a2,,N
us- "'"a 2  (20)

-'. Here the turbulent viscosity is expressed in a modified form of Prandtl's exchange coefficient, c, so that after
introducing the dimensionless variables

U I-+-U11

U. U,.

(21)

where f (0)-1.0 as 0 0

and by the transformation

= o 2a 2

the following formulation of the equation of motion is obtained

ao a20 (22)

with the initial conditions

0 = 0,C)= 0for -oo<C<O
= 0=for O<<1.0

. '- . 0 ,---for .O <C<

and boundary conditions

* *#=O(C-oo)=0 for f<O

0=(f'oo)=1.0 for f>0
Here S is the initial boundary layer thickness shown in figure 12. a is the jet spreading parameter which has
been found experimentally by Kort and Tripp 117] to fit the following equation:

* u =12.0 + 2.758M. for air (23)

The solution to equation (22) for the above initial and boundary conditions is:

. 0.51= - erf N , - + =fj ( - 0 (24)

* where vip, the position parameter is given by

1"- and v7 o t
LM .I4
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The error function, erf(x), is defined by

erf (z) =

where rf (-Z) = -erf(z)

Looking at a limiting case of equation (24):

then 0-0"0

17P 1" ,' M~lp = ' - --

This limiting case is for either no initial boundary layer, which is a good assumption for labyrinth seals, or
fully developed velocity profiles. Since rij -- 0, the variable q is now undefined. Liepman and Laufer [181
have shown that q for this limiting condition is:

• - 1  V (25)

Goertler 1191 has shown that the dimensionless velocity ,4, follows directly from equation (24) when tip - 0.

"0 = 0.5(1 + erf(1)) (26)

Equation (26) is a solution for the dimensionless velocity profile, 0, at any dimensionless position,q. The
goal of this development is to determine the dimensionless velocity, 4j, along the dividing streamline whose
dimensionless position is Ply. The dimensionless dividing streamline position, iyj, can be obtained by solving
the integral form of the continuity and x-momentum equations for the system shown in figure 12. Equations
(23,25 and 26) are used to obtain the solution to the integral equations which are to be derived next.

Control Volume Anal .si
The coordinate systems and definition of the control surface are shown in figure 12. The (x,y) coordinate
system is the intrinsi coordinate system while the (X,Y) coordinate system is the reference system.Equations
(25) and (26) are approximate relations; exact relationships, if known, would provide for conservation of
momentum for the constant pressure mixing region. The reference coordinate system is the coordinate
system in which momentum is conserved. The intrinsic coordinate system is located with respect to the

K." reference coordinate system by a control volume analysis utilising the conservation of momentum principle
for this constant pressure mixing region. The relationship between tQe coordinate systems normal to the jet
is:

y.(z)=Y-Y with p,(0) =0.

* X-Momentuin Equation
The steady low x-momentum equation for the jet flow shown in figure 12, written for the intrinsic coordinate
system and expressed in the previously defined dimensioless variables is:

,- f -0!4 + , _ = L 'd7 + #. (27)
0: P: P,

where distance R is chosen such that:

I - 0(17R) <<< 1.O

For the momentum equation, the lower control surface is located at -co. This equation contains no surface
.. forces. This is realistic for a labyrinth seal if location R is chosen far from the stator wall. Applying the

condition of no initial boundary condition (i, - 0) equation (27) is:

2L 

'.



. 'elm

1m =9 J - -L2ds7 (28)
f' PI

Continuity Equation
The steady flow continuity equation, written for the intrinsic coordinate system and expressed in the previ-

": ously defined dimensionless variables is:

(7 f 1.0 P od + ,t - ,7p Od,7 + IN, (2)
PlP fL 1 P(

For the continuity equation,the lower control surface is coincident with the jet dividing streamline. Substi-
tuting the results of the momentum equation, equation (27), into equation (28) yields:

Making the assumption of no initial boundary layer (q., - 0), equation (30) becomes:

S.t

=d j.L 2dn (31)

* The density ratio, (p/pa), for isoenergetic tow (constant temperature) is given as:

P (1-a 2 ) (32)

PI (1-C
24 

( 32)

The final form of the continuity equation becomes:

* _" _ ) [e"

dq (33)
-4~f whreC ( C42 02)' C4202)p

where Ca is the Crocco number. Equation (33) can be numerically integrated for a given Crocco number
using the definition for given in equation (26). The Crocco number is defined as:

Ca2 - (T+(y-)M2) (34)

The Crocco number in a dimensionless velocity simil to the Mach number. The Crocco number uses the
' maximum isentropic speed of a gas while the Mach number uses the local speed of sound. The Mach number

varies between 0 andoo while the Crocco number has a range of 0 to 1.

* The solution to equation (33),the location of the dividing streamline, can be obtained by the following step.:
0) Calculate the Mach number using the seroth-order leakage value.The seroth-order leakage i discussed

in the next section.
1) Calculate the Crocco number using equation (34).
2) Substitute equation (26) into equation (33) and integrate the error function. The value of the error

function at the limits R and -co is 1.0, leaving an equation in q- only. This is solved for otj which is the
dimensionless location of the dividing streamline.

3) Insert % into equation (26) to obtain the dimensionless velocity along the dividing streamline, 0i.
The results of this solution procedure an tabulated in table 2, for air. For air (y L4) flowing in a labyrinth
seal, the maximum possible Mach number is 1.0. Therefore, the maximum possible Crocco number is 0.408
or Ca 2 = 0.167. The range of solutions is: 4*

0.61632 < O, < 0.6263

Using an average solution of Oe = 0.62 gives a maximum error of less th u 11 percent. The recirculation
velocity at the interface is:

%.6.- -- ,:-.- ... % ' -. ' -.- - .. , ,-.-.. .,, :. ."



U2, = 0.e2U1  (35)

The only remaining prbblem is the numerical definition of W/b. Looking back, equation (11) and equation
(26) both describe the axal velocity profile in the jet flowfield. If the following observation is made

t'2

V 1

then equation (35) can be substituted back into equation (12) yielding the following numerical definition for

Y = 0.584 - 0.1340i = 0.5b

It is interesting to note that Jenny et L. [7] assumed that f/b = 0.5.

Figure 13 shows a plot of the dimensionless axial velocity profile in the recirculation region for seal A of
table 1 as alculated by Rhode 12,31. This profile is for the center o the recirculation region to the top d
the labyrinth tooth. The intersection of the two dashed lines is the location and value of the theoretical
recirculation velocity as calculated using equation (35) and the assumption that the dividing streamline
makes an angle of 60 with the horisoutal. The agreement is excellent. Again, equation (35) was derived
using a 2-D theory which neglects the circumferential velocity component. Equation (35) is actually the
velocity at the interface of the two control volumes. The velocity components used in the shear stress
equations are all average velocity components. To be consistent, the average recirculation velocity must be
used. The CFD results show that the velocity distribution is parabolic in nature. Integrating this yields:

U2 = 0.206U, (38)

Table 2. Tabulated solution to equation (33).

Ca 2  Oi Ca 2  4,,
0.00000 0.61632 0.68000 0.67553
0.05000 0.61915 0.7200 0.68188
0.10000 0.62211 0.76000 0.68903
0.15000 0.62523 0.80000 0.69724
0.20000 0.62848 0.84000 0.70689
0.24000 0.63129 0.66490 0.713944
0.28000 0.63405 0.880 0.719944
0.32000 0.63725 0.90250 0.728834
0.36000 0.64047 0.92160 0.734949
0.40000 0.64387 0.94090 0.744883
0.44000 0.64748 0.96040 0.757869
0.48000 0.65132 0.9010 0.777432
().52000 0.65543 0.992016 0.798766
0.56000 0.65979 0.98001 0.823427
0.60000 0.8~462 1.000000 1.000000
0.64000 0.6982

Reduced Eqtion.
The solution of the governing equations can be simplified by reducing the number of equations by one. This
reduction is accomplished by using equation (2) to eliminate mr from the other equations. The continuity
equation for control volume I becomes:

tpAj + ____e + + aWe =0 (37)
3 t R. 18 at R42 aO

If equation (37) times the circumferential velocity, W, is now subtracted from equation (3), the following
reduced form of the momentum equation for control volume I is obtained:

% %o



aW, pWIAI aW / apA2  apW2A 2  .
+* RAO ) (W, - Wa,)- A 1 - , 1 +t rj 3  / (38)

Similarly, if equation (2) times the circumferential velocity, W2 , is subtracted from equation (4), the reduced
momentum equation for control volume 1 is obtained.

pA2 !W 2 +pW 2 A2 8W 2 +(pA 2 +8pW 2A 2 \ wi-K
at R82  ae at R82af )(3 W.)

= A2 MP + i~GrL

The number of variable is reduced by using the ideal gas law to eliminate the density terms.

P = ,RT (40)

Leakage Equation
To account for the leakage mass low rate in the continuity and momentum equations, the following model
was chosen.

* mn~=pip~H~V ~(41)

where the kinetic energy carryover coefficient, p is defined by Vermes [201 for straight through seale as:

"2= (1- (42)

- 8.52

w here (L VI -I + 7.23)

and is unity, by definition, for the first tooth of any seal and all the teeth in interlocking and combination
groove seals. This definition of the carryover coefficient is a local coefficient which can be perturbed in the
clearance. The previous analyses by Childs and Scharrer (61 and Jenny et &1 f71 used a global definition
which could not be perturbed.

The tow coefficient is defined by Chaplygin 1211 as:

01i wh25~2? ,ere e=y~ ~ - (43)

.-. This flow coefficient yields a different value for each tooth along the seal as has been shown to be the case
by Egli 1221. For choked Bow, Fliegner's formula 1231 will be used for the last seal strip. It is of the form:

.. ,0-- PMcHNc (44)

* Perturbation Analyisa
For cavity i, the continuity equation (37), momentum equations (38,39) and leakage equation (40) are the
governing equations for the variables W1j,W 2j,Pn. A perturbation analysis of these equations is to be
developed with the eccentricity ratio, e= ,/Cr, selected to be the perturbation parameter. The governing
equations re expanded in the perturbation variables:

A & = P,,+elPi H, = Cr, + HH,

Wi = W + AW4l, A = A. + tH

=.. W + CW 2 1.

............ '(*'*%



where e e./Cri is the eccentricity ratio. The seroth-order equations define the leakage mass flow rate and
the circumferential velocity distribution for a centered position. The first-order equations define the per-
turbations in presurm nd circumferential velocity due to radial position perturbation of the rotor. Strictly
speaking, results of a first order analysis are only valid for small motion about a ceutered position.

Zeroth-Order Solution
The seroth-order leakage equation is

h+I = ri + ,ho (45)

and is used to determine both the leakage-rate, rk. and pressure distribution for a centered position. The
leakage-rate and cavity pressures are determined iteratively, in the following manner. First, determine
whether the flow is choked or not by ssuming that the Mach number at the last tooth is one. Then, knowing
the presure ratio for flow st sonic conditions, the pressmre in the last cavity is found. The mm fow can
be calculated using equation (44). Working backwards towards the first tooth, the rest of the pressures can
be found using equation (41). The final pressure calculation will result in the reservoir pressure necessary
to produce the sonic conditio sat the last tooth. If the actual reservoir pressure is les than this value, then
the flow is unchoked. Otherwise, it is choked. If the flow is choked, a similar procedure is followed, but now
the pressure in the last cavity is guessed and a =a" fow rate calculated using equation (44). The remaining
pressures are calculated uing equation (41). This is repeated until the calculated reservoir presure equals

. the actual reservoir pressure. If the flow is unchoked, the pressure in the first cavity is guessed and a me"
flow rate caklated using equation (41). The remaining pressures are calculated with the same equation.
This procedure is repeated until the calculated sump pressure equals the actual sump pressure.

The seroth-order circumferential-momentum equations are

wi- w -) = (r,, - .a )L (46)

r i.. = r,.,ariL (47)

From calculated pressures, the densities can be calculated at each cavity from equation (46), and the only
unknowns remaining in equations (46) and (47) are the circumferential velocities W1, and W3.j. Given an
inlet tangential velocity, a Newton-root-finding approach can be used to solve equations (46) and (47) for
the i-th velocities, one cavity at a time. This is done starting at the first cavity and working downstream.

First-Order Solution
The governing first-order equations (48,49,50), define the pressure and velocity fluctuations resulting from
the s clearance function. The continuity and momentum equations follow in order:

,a Psi ap t, _ aw ry, ,. aw .,G '+ G2  r! + +,~

+ G, P 1 - + G7 P1i+ = -G&.H - G.-- Gj H (48)

81i EL x 1w,i aW11.+x~ + XU W2 ,] p +Xi p+ - atat Asa [02 a

+ x~P w ,I+ X..P 1, + X~ja'1 ,1 + xsiW11i + XW 21iR82 as

"% - jfiW1  - XaHt (49)

." _ [YK.~~ Y[YWU + YaW.
O t L JU + e - j oe e2 J

Ya -- + Y4,Pj + YjW21, + Y&Pti- + Y,,W 1 , = YzjHjj (50)

where the X's, Y's and G's are defined in Appendix B. These perturbation equations are very different from
those of Jenny et al. (7J because their analysis neglects pressure perturbations in the leakage and shear stres

* equations, and amumes that the density is constant.
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If the shaft center moves in an elliptical orbit, then the seal clearance function can be defined as:

e = -a cowt coeo - b oinwt ain"
S-Jco(8 - Wt) + Co,(6 + wt)] - - Wt) - (a+ wt)(

The pressure and velocity £iuctua;_ms can now be stated in the associated solution format:

P = Pcos(f + wt) + P.m ,sn(f + wt) + P;coe(f - wt) + Pein(f - ,t) (52)
w 11 , = W+,ico.(f + wt) + Wj+..sin( + wt) + W;.jco.( - wt) + Wij..r4( - Wt) (53)
-' = WIC,.(9 + Wt) + W2.in(f + W) + W~eo.(9 - t) + W ,ift(I - wt) (54)

Substituting equations (51), (52), (53) and (54) into equations (48), (49) and (50) and grouping like terms
of sines and cosines (as shown in Appendix C) eliminates the time and theta dependency and yields twelve

,, linear algebraic equations per cavity. The resulting system of equations for the i-th cavity can be stated:

A._II(X-) + I(AI(X,) + IA.+I](X+,) = (B,) + (C,) ()

'- where

(XJ +P +4. IP'I;I -i- W +11.Wi Wi~W+ * -2ci -ii w+ ,+
+t(X_ 1 ) = (Pa 1 ,P +, _z,.P _,,W ._, _w;_zWTi, _z..: ,, ._,,.:,. _,,Wici_1)

The A matrices and column vectors B and C are given in Appendix C. To use equation (55) for the entire
solution, a system matrix can be formed which is block tridiagonal in the A matrices. The Ose of this
resultant matrix is (12N0 X 12N0) since pressure and velocity perturbations at the inlet and the exit are
assumed to be sero. This system is easily solved by various linear equation algorithm, and yield a solution
of the form-

•4 .- !; i+ ; t yL

P; = !TRi + ;!, ..

-. j,;P = !'zi + ! ,..,

• The forte-motion equations for a labyrinth seal are amed to be of the form:

.. KI, (5 )
I

The solution of equation (57) for the stiffness and damping coefficients is the objective of the current analysis.
The solution procedure used for this analysis is the same one used by Childs and Scharrer [6]. The desired
solution for the stiffness and damping coefficients is:



NC

K = wRe y(F,, + F..,)L,

NC

NiC (58)

c !R ---I(F., + F.Z ,

NC

rR ° + P---1A

SOLUTION PROCEDURE SUMMARY
In review, the solution procedure uses the following sequential steps:

. a) Determination of whether the ftow is choked or not using equations (41) and().
b) The steady-state pressure distribution and leakage are found uing equation (41) and/or (44).
c) The steady-state circumferential velocity distribution is determined using equations (48) and (47).
d) A system equation is formed for the first-order perturbation variables and solved using the cavity

equation (5).
e) Results of this first-order perturbation solution, as defined in equations (56), are inserted into equation

(58) to defined the rotordynamic coefficients.

CONCLUSIONS
This paper has presented a new two-control-volume analysis for the rotordynamic coefficients of labyrinth
gas seals which, for the first time, accounts for the recirculation velocity in the s cavity. The analysis
was developed in conjunction with a 2-D CFD model which was used to verify the shear stres and jet flow

$Smodels used. A comparison between the CFD results and the results from the 'bulk flown model of this
paper showed the following:

1) The new two-control-volume model accurately predicts the stator wall shear stres for a teeth-on-rotor
labyrinth seal cavity.

2) The new model predicts the cavity wall shear stress within 25 percent of the CFD results for a
teeth-on-rotor labyrinth seal.3 3) The 2-D jet flow theory used in the new model accurately predicts the magnitude of the recirculation
velocity along the dividing streamline.

4) The CFD results show that the mixing length parameter, 1, used in the free shear stres equation is
relatively constant and need not be considered a function of cavity geometry as was assumed by Jenny et
al. 171.

The final test of the model, a comparison between experimental results for stiffness and damping coefficients
and the predictions of this model, will be carried out in Part 2 of this paper.

.0"
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NOMENCLATURE

A Crowsectional area of control volume (L2); illustrated in figure (6)
B Height of labyrinthseal strip (L); illustratedin figure (5)
C Direct damping coefficient (Ft/L)
Cr Nominal radial clearance (L); illustrated in figure (5)
Dh Hydraulic diameter of cavity (L); introduced in equation (6)
H Local radial clearance (L)
K Direct stiffness coefficient (F/L)
L Pitch of seal strips (L); illustrated in figure (5)
NT Number of seal strips
NC=NT-1 Number of cavities
P Pressure (FIL')
R Gas constant (L 2/Tt 2 )
Re Radius of control volume (L); illustrated in figure (5)
Row Surface velocity of rotor (L/t)
T Temperature (T)
Tp Tooth tip width (L); illustrated in figure (5)

*U Avexage axial velocity for control volume (L/t); in figure (2)
W Average circumferential velocity for control volume (L/t); illustrated in figure (2)
W. Average circumferential velocity in the interface between control volumes I and [1 (L/t); introduced in

* equation (18)
a,b Radial seal displacement components due to elliptical whirl (L); introduced in equation (51)
ar, as Dimensionless length upon which shear stress acts; introduced in equation (3) and (4)
c Cross coupled damping coefficient (Ft/L); in equation (57)
e. Displacement of the seal rotor from centered position (L)
k Cross coupled stiffness coefficient (F/L); in equation (57)
m Leakage mass Bow rate per circumferential length (M/Lt)

* .. mr, nr, ms, ns Coefficients for friction factor; in equation (3)
t Time (t)
v Total velocity (L/t); introduced in equation (11)

,--- w Shaft angular velocity (1/t)
p Density of fid (MIL 3

Y Kinematic viscosity (I It)
I = 4,/Cr Eccentricity ratio
e Turbulent viscosity (Ft/L2); introduced in equation (19)
-1 Ratio of specific heats

Al. Subscripts
o Zeroth..order component
I First-order component, control volume I value
2 Control volume II value
i i-th chamber value
j Value along the dividing streamline

V x X-direction
y Y-direction
r Reservoir value
a Sump value

4o.
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A PPENDIX A: GO VERNING EQ UA TIONS FOR TEE TH- ON- STA TOR SEA L
.4 Reduced Equations

The main difference between the teeth-on-stator equations and the teeth-on-rotor equations occur, in the
momentum equations' The shear stresses acting on control volume I are now the rotor shear stress, r,, and
the free shear stress, ry. Similarly, the shear stresses acting on control volume 11 are now the stator shear

'~ ~'stress, r., and the free shear stress, ry. These differences are evident in the reduced form of the continuity
and circumferential momentum equations given below:
Continuity I

apAj +8pW 1 AI +B pA2 + apW2A2 =0 (Al)

6 + Rs1 80 at R82a6
Momentum I

pAB W1+pWIABaW1 + pA2 + apW2A)(. ~( (A2)
ri(Wl- ~ =1 + r, - r.arjA

Momentum HI

pA 8W2 + pOW2 A2 8W2 +(8A2 + pW2 A2\,W4
(M3)

Ae2 ae "

where as and ar are defined as:

asi = (2B, + Li)/4. ar, = 1.0

The rotor shear stress in the circumferential direction is now defined using the smaller hydraulic diameter

and the velocity components of control volume 1.

1, tVRsi wW02 + U ,Re, W dw - W) +U2D(M)

where Dj 1 , is the hydraulic diameter of C.V. L, defined by:

*Dj 1 = 2Crif/(CrLj) (AS)

Similarly, the stator shear strews in the circumferential direction is now defined using the larger hydraulic
diameter and the velocity components of control volume 11.

where D#,2i is the hydraulic diasseter of C.V. II, defined by:

D, = 2BA41(BA4) (A7)

The definition of the free shear stress remains the same. However, since CFD results were only available
* for the teeth-on -rotor configuration, the sensitive mixing length ratio, 11b, may change for a teeth-on-stator

seal.

N6 ,



Zerotft-Ordcr Equations
Con tinuty

=il (AS)
Momentum I and II

rh0 ( Wli W 1i 1 ) =(rji. Vr.iae)Li (AS)

U = rL..rL (A1a)

First-Order Equations
/ The first-order equations remain exactly the same as before. Since change. were made in the locations and

definitions of the rotor and stator shear stress terms, the following changes in the coefficients of the first-order
equations are necessary:
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p 2  -P 2 ~ P
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U_______i MiUi(4S1 i Ilie -1

X6=ht + ~ar~i+ rjar L ( +mr) (Ruiw - Wi) + irii + TiWiWiURs 1 w - W. (RSIW - W 1)
2 + U12 ~ - W. (W2 , - W1 1)2 + (U2 , -l)

Cr, [ 7.O4Cri p 2Cr,2

Y. _U Uipi pli~Ui(4Si~ - 5)b~ 7_4(.+ )
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APPENDIX B: DEFINITION OF FIRS T- ORDER COEFFICIENTS
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A PPENDIX C: SEPA RA TION OF GO VERNING EQ UA TIONS
Continuity:

Coe(e + Wt) :(Giwd + G2 )P~j + G3 WI+4 + G4 W2+. + G6 P,,+ + GOPi- + G 7 P, .+
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coe(e - wt) :(-Glw +i G2 )P~j + G3 W;1 , + G4 Wj~j + G6P; + GsP;-1 + G 7 P+

ein(9 -t):(Gjw -G 2 )P - G3 W; - G4 W~ + G6P i+ G.P;-+G7~+

[=~ - C.] (a + b)

Momentum I:
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DEFINITION OF MATRIX ELEMENTS

A.. 1 MATRIX

A1.2 = A2,1 = A3.4 = A4,. = G

A 6 .2 = A6. 1 = A,.4 = As.. = X6

A6,6 = A. = A =,, As,7 = -=ho

A, 2 = Alo., = A11.4 = A 12.3 = YG

UThe remaining elements are sero.

Ai MATRIX

A1, = -A 2,2 = Gjw + G 2

A,3 = -A4,4 - ,w + G2
A 1 .2 = A 2 ,1 = A, 4 - A 4 ,3 = G=0

A62 = A ,.1  = A.,, = X4

A6- -A2 = XW + X2 +

A,.3 = -A,. = -X3W + X 3 + 2+-----

*1 A,.2 = Ajo. -A11.4 = A12 .3 = Y

" Ag,. = -A1  = Y(, + Y3 + 8--2-

Y3W 2iA11,, -A 1 2,4 = -Y 2W + Y3 +

A1, = -A 2.6 = A3,7 = -A 4 .8 = G,

A6.6 = -A4e = X1 +

A7,7 =-A.,. = X1  - + K J

A6.,e = A.,6 = A,.= Aa. = X4

A,.@ = Aoo, = A11,s = A12.7 = Y7

A1., = A3. 11 = -A 2 ,10 = -A 4. 12 = G4

A.,9 = -A ,10= A,, , = - i . f -A .P =
R82

A., 10 - A4,. = A7, 12 = AG,1i = X

A9,, - -Ao.o = Yaw + L + Y'--
Re2  R82

A11.11  -A 12 ,1 2 = -Ylw + i + R2-"
Re2  R8 2

Aq,1 o = Alo., = A11.12 = A12,1 1 = Y6

The remaining elements are zero.

A.+, MATRIX

A1 2 = A2,1 = A, 4 = A4,3 = G,

The remaining elements are sero.
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APPENDIX D: THE THEORY OF JENNY ET AL. 17]

*'" The theory of Jenny et aL 171 has shown consistently good agreement with measured test results 1251 in
predictions of cross-coupled stiffness and direct damping. The author had hoped to program their solution
and make direct comparison to the present theory; however, as outlined below, unresolvable difficulties arose
in deriving the published equations of [7].

The theory of Jenny et al. 17) was derived for the "box-in-a-box" control volume configuration illustrated
in figure 5. Thus, a direct comparison of their equations with those presented in this report is not feasible.
However, a review of the development of their governing equations is of interest.

The following convention will be used for the control volumes in figure 5: the large control volume is control
volume I and the small control volume is control volume II. The continuity equations for the control volumes
shown in figure 5 are:

V Continuity I:

.pW 2A2  + pW A + ap(A l + A) + 0  (J1)
Ra0+ Rsao at

Continuity II:

apW2A2 + BpA 2  rn,. 0 (J2)
Rsae at (2

The following assumptions are used by Jenny et al. [71 to simplify equations (J1) and (J2):
a) the flow is incompressible (p = constant),
b) +j = ,i, and
c) the area of the control volume 11 is constant.

The first assumption seems questionable, since this is a compressible flow solution and quite often the flow
Ilk in a labyrinth seal achieves Mach 1 at the exit. Assumption (b) is a valid assumption for the seroth-order,

steady flow solution, but it is questionable for the first-order, unsteady flow solution for an orbiting rotor.
- Using the chain rule for the expansion of partial derivatives and the above assumptions, equations (3l) and

(J2) become:
Continuity I:

W2 + W + Cr (A +A)

8--as- Rsat"=0 (ao3)

Continuity I:

pA-- - Rmtj = 0 (J4)

The equations given by Jenny et al. 17) are:
Continuity I:

8W 8 1  Cr R 8 (A + A2)A 2 - + A 12 -o - W -t =0 (J5)
80 +s -L-,-- (sat

Continuity 1I:

• -aw2 0

The difference between equations (3) and (J5) is in the sign of the third and fourth terms. The second and
third terms in equations (J3) Lad (JS) originate from the same partial derivative, but have opposite signs.
The author could not arrive at the same conclusion using the chain rule. The difference between equations
(J4) and (36) is the radius, Rs, in the second term. This may or may not be a problem since the radial mass
flow term, rhj, is not defined by Jenny et &l. 171.
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The author agreed with the derivation of the momentum equations for the control volumes shown in figure

S except for the aforementioned amumptions and the following discrepancies:
(a) the axial velocity component is incorporated in the definition of the stator wall shear stress, but

neglected in the definition of the Reynold's number which is used to calculate the friction factor term in the
shear stress relation.

(b) the perturbation of the friction factor is ignored. This term has been shown (24] to be important in
the solution for rotordynamic coefficients.

(c) the leakage equation is a global leakage equation. This means that local perturbations pertaining to
a cavity can not be found from this equation. Jenny et a1. [7] perturb this global equation for clearance.

(d) the carryover coefficient definition used in the leakage equation is a global equation and cannot be
perturbed.

(e) the flow coefficient used in the leakage equation was obtained from a plot of empirical data. No
explanation was given for the method used to obtain the dervatives of the tow coefficient used in the
perturbation equations.

The aforementioned problems prevented the author from obtaining a solution based on the theory of Jenny
et &l. 17]. Regrettably, no direct comparison between it and the theory presented in this paper was possible.

5M

.-..

N:-

-.-

0 -

0::-

"-3.'-



Fig. 1 Flow pattern in labyrinth cavity.
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THEORY VERSUS EXPERIMENT FOR THE
ROTOR.DYNAMIC COEFFICIENTS OF LABYRINTH GAS SEALS:

PART II - A COMPARISON TO EXPERIMENT 1

DAA W. CHILDS
JOSEPH K. SCHARRER

MECHANICAL ENGINEERING DEPAlrrMENT
TEXAS A&M UNIVERSITY

COLLEGE STATION, TX 77843

SUMMARY
An experimental test facility is used to measure the leakage and rotordynamic coefficients of teeth-on-

rotor and teeth-on-stator labyrinth gas seals. The test results are presented along with the theoretically
predicted values for the two seal configurations at three different radial clearances and shaft speeds to 16,000
cpm. The test results show that the theory accurately predicts the cross-coupled stiffnms for both seal
configurations and shows improvement in the prediction of the direct damping for the teeth-on-rotor seal.
The theory fails to predict a decrease in the direct damping coefficient for an increase in the radial clearance
for the teeth-on-stator seal

INTRODUCTION
Part 1 of this paper presented a new two-control-volume analysis to predict the rotordynamic coefficients for
labyrinth gas seals. This part (Part 2) of the paper provides a comparison of the predictions of the analysis
from Part 1 to the new test results for six 'see-through' labyrinth gas seals, as shown in figure 1, three with
teeth on the rotor and three with teeth on the stator. The design, development, and operation of the test
apparatus and facility, which have been developed to measure the leakage and rotordynamic coefficients of

aannular gas seals, has been described by Childs et al. [1]. The apparatus described in [1] was limited to
a top shaft speed of 8,000 cpm. The apparatus has since been redesigned to operate at shaft speeds up to
16,000 cpm. A complete discussion of the redesign of the apparatus can be found in Elrod and Childs [2].

As described in [1], the rotordynamic coefficients for a gas seal are defined by the following linearized force-
displacement model.

_Fx _ [K_.. Kg. X I+[. C,_ (
K,,,v Kri Y -Y EV

Where (X,Y) define the motion of the seal's rotor relative to its stator, (F., F,) are the components of the
reaction force acting on the rotor, and (K.., K,,, K., Ky.) and (C.., C,,, C.,, C.) are the stiffness and
damping coefficients respectively. Equation (1) applies for small motion of the rotor about an arbitrary
eccentric position. For small motion about a centered position, the following simpler model applies.

-{x=[K 1 k~ +( [ C { } (2)
'* Although the test apparatus has the capability of separately identifying the eccentric-position rotordynamic
*' coefficients of equation (1), the results presented here are for the centered-position cue only.

PREVIOUS EXPERIMENTAL PROGRAMS
A limited amount of experimental data has been published to date on the determination of stiffness and

. damping coefficients for labyrinth gas seals. The first published results for stiffness coefficients were those
of Wachter and Benckert [3,4,5]. They investigated the following three types of seals: a) teeth-on-stator,
b) teeth on the rotor and stator, and c) teeth on the stator and steps or grooves on the rotor. These

'This work was supported in part by NASA Grant NASS-1Si from NASA Lewis Research Center (Technical
Monitor, Robert Hendricks) and AFOSR Contract F49620-82-K-0033 (Technical Monitor, Tony Amos)



results were limited in that the pressure drop was small, much of the data were for nonrotating seals, no
data were presented for seals with teeth on the rotor, the rotor speed was limited, and tests where rotation

- and inlet tangential velocity existed simultaneously were very scarce. The next investigation was carried
out by Wright [61, who measured an equivalent' radial and tangential stiffness for single-cavity seals with
teeth on the stator. AltMough for a very limited and special case, Wright's results do give insight into the
effect of pressure drop, convergence or divergence of the clearance, and forward or backward whirl of a
seal. These results could be reduced to direct and cross-coupled stiffness and damping, hence, they are the
first published damping coefficients for teeth-on-stator labyrinth seals. Brown and Leong 17,81 investigated
the same seal configurations as Wachter and Benckert, in an effort to verify and extend their work. Their

) results include variations of pressure, geometry, rotor speed, a inlet tangential velocity. Although the
investigation was extensive, the published results are limited because of the lack of information concerning
operating conditions for the various tests. Childs and Scharrer 19] investigated geometrically similar teeth-
on-rotor and teeth-on-stator labyrinth gas seals for stiffness and damping coefficients up to speeds of 6000
cpm. Kanemitau and Ohaswa 1101 investigated multistage teeth-on-tator and interlocking labyrinth seals
up to spee& of 2400 cpm. They measured an effective radial and tangential stiffness while varying the whirl
frequency of the rotor. These data could be reduced to stiffness and damping coefficients. Hisa et al. 111)
investigated teeth-on-stator seals with 2-4 teeth and a teeth-on-stator seal with steps on the rotor up to
speeds of 6000 cpm. These data only included static tests for direct and cross-coupled stiffness using steam.

The most extensive comparison of analytical predictions and experimental results was carried out by Scharrer
(121 using the theory of Childs and Scharrer 1131 and the results of Childs and Scharrer 19]. This comparison
showed that the theory 1131 predicts cross-coupled stiffness reasonably well, but underpredicts direct stiffness,

* direct damping and cross-coupled damping.

In reviewing previous experimental programs, there is a clear need for a) more extensive testing of teeth-
on-rotor labyrinth seals and b) experimental results showing the effect of radial clearance change on direct
damping coefficients. This paper addresses these points in addition to evaluating the new analysis presented
in Part 1 of this paper by comparison to the new test results.

TEST APPARATUS AND FACILITY
Introduction
The test results reported here were developed as a part of an extended, joint NASA-USAF funded research
program for annular gas seal studies. Tests were carried out on six 'see-through' labyrinth seals, three
with teeth on the rotor and three with teeth on the stator, each with different radial clearances. The test

-.j program had the objective of examining the effects of a change in radial clearance on the leakage and stability
performances of a teeth-on-stator and a teeth-on-rotor labyrinth seal. Air is the test fluid.

Test Apparatus
The rotor shaft is suspended pendulum-fashion from an upper, rigidly mounted pivot shaft, as shown in figure
2. This arrangement allows a side-to-side (horisontal) motion of the rotor. A cam within the pivot shaft
allows vertical positioning of the rotor. The rotor is both positioned and excited horisontally by a hydraulic

* shaker head which acts on the rotor-shaft bearing housing and works against a return spring mounted on the
opposite side of the bearing housing. The design of the test rig permits the installation of various rotor/stator
combinations. The stator is supported in the test section housing by three pieso- electric quartz load cells
in a trihedral configuration. The test apparatus measures the reaction-force components and relative seal
stator motion. The harmonic components of the motion and force signals are used to identify the stiffness
and damping coefficients. Different seal stator designs are obtained by the use of inserts.

The dimensions and pertinent data for each seal configuration are given in table 1. For the remainder of
this paper, the seals will be referred to as seal 1, seal 2 and seal 3, as given in table 1, in addition to their
respective configuration. The smooth and labyrinth inserts used for the 0.4mm (0.016in.) clearance seals
are shown in figure 3. The labyrinth tooth detail for both rotor and stator is shown in figure 4.
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Table 1. Dimensions of seals tested in this study

Sa Teeth-on-rotor Teeth-on-statori ~seal1 I

Radius, mm 72.5 75.6
Length, -m 50.8 50.8
Clearance, mm 0.3 0.33
Number of teeth 16 16
Seal2

S Radius, mm 72.5 75.6
Length, mm 50.8 0.8
Clearance, mm 0.4 0.4
Number of teeth 16 16

-Seal 3
Radius, mm 72.5 75.6

* Length, mm 50.8 50.8
Clearance, mm 0.55 0.5
Number of teeth 16 16

Test Variables
*-" When shaking about the centered position, the Dynamic-Seal-Apparstus is capable of controlling the fol-

lowing three independent variables:pressure ratio, rotor speed and inlet eircufnferential welocitj/.Two shake
frequencies, 56.8 Hs and 74.6 Hs, were used during testing with essentially the same results. The results to
be presented were obtained by shaking at 74.6 Hs at an amplitude between 0.076 mm and 0.1 mm. The
actual test points for each of these three independent variables are shown in table 2. When reviewing the
following figures, table 2 should be consulted for the definitions of all symbols used.

Table 2. Definition of symbols used in figures

Supply pressure Rotor speeds Inlet circumferential velocities
1 3.08 bar 1 3000 cpm 1 High vel. against rotation
2 4.46 bar 2 6000 cpm 2 Low veL. against rotation
3 5.84 bar 3 9500 cpm 3 Zero circumferential vel.
4 7.22 bar 4 13000 cpm 4 Low vel. with rotation
5 8.22 bar 5 16000 cpm 5 High vel. with rotation

The reservoir pressures, as measured upstream of the diowmeter, are given in table 2. These values differ
from the actual inlet pressure because of frictional losses and an acceleration of the fluid due to the inlet
guide vanes. No tests could be run at zero pressure difference, since a small pressure difference is necessary
to keep the rotor fr-,t- ahifti-ev axially and rubbing the inlet guide vanes. Similarly, no zero rotor speed tests

*' were run, since rotor rotation was necessary to prevent damage to the thrust bearing during shaking.

The inlet circumferential velocities are given in figures 5,6 and 7 as a function of pressure ratio. The teeth-
on-rotor results are on the left and the teeth-on-stator results are on the right. This convention will be used
for all of the results presented in this paper. The figures show that inlet circumferential velocity remains
fairly constant over the pressure ratios tested. There were five test points for inlet circumferential velocity;

- two positive, two negative, and one at zero. The sero inlet circumferential velocity point corresponds
to the x-axis in the figures 5,6 and 7. The negative numbers shown in the figures mean that the inlet
circumferential velocity was opposed to the direction of rotor rotation. The positive numbers mean that the
inlet circumferential velocity was in the same direction a rotor rotation. The two different magnitudes of
inlet circumferential velocity, for each direction, correspond to the different inlet guide vane geometries, as
discussed in Ill. The ratio of inlet circumferential velocity to rotor surface velocity (inlet circumferential
velocity ratio), ranged from about -6 to about 6. Although the larger numbers are practically unrealistic,
they do give insight into the effects of inlet circumferential velocity that would have otherwise gone unnoticed.
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Normalized Parameters
Before the tests described herein were performed, the TAMU gas seal teat apparatus was modified as de-
scribed by Elrod and Childs 121 to allow operation at running speeds up to 16,000 cpm. As expected,
subsequent tests revealed a dependence of the rotor diameter on running speed due to inertia and thermal
effects. The rotor growth data, shown in table 3, were obtained from eddy current motion probes positioned
at the midapan of the seal. Thus, as the rotor turns faster, the forces in the seal are affected not only by the
increased surface speed of the rotor but also by a change in clearance. Theoretically, normalisation would
collapse the data and make the presentation simpler and more straight forward. This was not the case with
the labyrinth seals tested in this study. The failure of the normalization is detailed by Scharrer [14].

Table 3. Growth of rotor with rotational speed

Rotor speed (cpm) Diametrical growth (mm)
3000 0.01
6000 0.02
9500 0.03
13000 0.05
16000 0.11

Dynamic Results
For a circular orbit of amplitude A, the resultant radial and tangential forces developed by the seal model
of equation (2) are illustrated in figure 8 and are defined by

-FA = K + w,
Ft/A = k - Cw

From a stability standpoint, the destabilizing tangential force, F, is of moat interest. The destabilizing
influence comes from the cross-coupled stiffness, k, and the stabilizing influence comes from the direct
damping, C. The radial force usually has little influence on stability, except in rare cases involving multistage
'back-to-back' centrifugal compressors with midspan seals where large negative direct stiffness values may
reduce the natural frequencies. Since the focus of this study was on stability, the cros-coupled stiffness and
direct damping results, which have the most influence, will be presented first. The direct stiffness will follow.

Relative Uncertainty
Before proceeding with the results, a statement must be made concerning the uncertainty present in the
experimental results. Using the method described by Holman 1151, the uncertainty in the dynamic coefficients
can be determined. The uncertainty in the force, excitation frequency, and displacement measurements are
0.89 N (0.2 lb), 0.13 Hs , and 0.0013 mm, (0.05 mils), respectively. The resulting calculated uncertainty is 7
N/mm (40 lb/in) for the stiffness coefficients and 0.0875 N-s/mm (0.5 lb-s/in) for the damping coefficients.
Since the measured cross-coupled damping results were rarely greater than the uncertainty, test results are
not provided here for this parameter.

TEST RESULTS
It might seem obvious, since this paper evaluates the effect on seal performance of varying the radial seal
clearance, that the data should be presented as a function of clearance (clearance being the x-axis). However,
since the inlet circumferential velocity is directly dependent on seal leakage and the seals leakage a different
rates due to differing cross-sectional areas, the inlet circumferential velocity test points for seal 1 differs from
those of seals 2 and 3. This is a problem because the rotordynamic coefficients are very sensitive to the inlet
circumferential velocity. Therefore the dynamic data will be presented as a function of inlet circumferential
velocity ratio at one pressure and one rotor speed. In the follouing figures, the solid lines represent the test
results and the broken lines represent the analytical predictions.

-" Cross-coupled Stiffness Comparison
Figure 9 shows a comparison of experimental and theoretical results for cross-coupled stiffness versus inlet
circumferential velocity ratio for the three seal clearances of table 1. The figure shows that the theory does a

Sgood job of predicting the cross-coupled stiffness for both the teeth-on-rotor and teeth-on-stator seals, at low
rotor speeds. The figure also shows that there is no consistent trend in the cross-coupled results for a change

0%



in clearance. Figure 10 shows a comparison of experimental and theoretical results for cross-coupled stiffness
versus rotor speed for seal I (minimum clearance seal) of table I at the inlet pressures of table 2. The figure
shows that the theory correctly predicts a sharp upturn in cross-coupled stiffness at the higher rotor speeds,
for the teeth-on-rotor seal. This speed sensitivity was not evident in the low speed results of 191 nor in the
results for seals 2 and 1. The figure also shows that the cros-coupled stiffness for the teeth-on-stator seal
decreases as rotor speed increases. This decrease in cross-coupled stiffneas for an increase in rotor speed was
also reported by Hisa et al. [Ill for their teeth-on-stator seals. The theory shows the same decrease until the
higher rotor speeds are reached, then it shown a sharp upturn. Thi upturn may appear in the experimental
data at higher rotor speeds. The same decrease in os-coupled stiffness with an increase in rotor speed was
evident in the results for seals 2 and 3.

Direct Dampmnu Oomparson
Figure 11 shows a comparison of experimental and theoretical direct damping versus inlet circumferential
velocity ratio at the three clearances of table 1. The figure shows that the direct damping coefficient for a
teeth-on-rotor seal increases as clearance increases. The theory correctly predicts this trend but underpredicts
the magnitude of the coefficient by 30 percent. The figure also shows that the direct damping coefficient
for a teeth-onu-tator seal decreases as clearance increases. The theory shows the opposite trend. Figure 12
shows a comparison of experimental and theoretical direct damping versus rotor speed for seal I of table
1 at the inlet pressures of table 2. The figure shows that the teat results show little or no sensitivity to
rotor speed, for either seal configuration, while the theory shows a sharp upturn at the higher speeds. This
upturn may be evident in future test results at higher speeds. The results for seals 2 and 3 showed the same
insensitivity to rotor speed.

Direct Stiffness Comparison
Figure 13 shows a comparison of experimental and theoretical direct stiffnem versus inlet circumferential
velocity for the seal clearances of table 1. The figure shows that, for both seal configurations, the direct
stiffness coefficient is negative and increases as radial seal clearance increases. One would expect sero
direct stiffness values at sufficiently large clearances. The theory predicts this same trend, for both seal
configurations. Figure 13 also shows that the theory underpredicts the direct stiffness magnitudes at high
rotor speeds. Figure 14 show a comparison of experimental and theoretical direct stiffness versus rotor speed
for seal 1 of table I at the inlet pressures of table 2. The figure shows that the test results, for both seal
configuration, show little or no sensitivity to rotor speed. The figure also shows that the theory is overly
sensitive to rotor speed. The insensitivity to rotor speed was also evident in the test results for seals 2 and
3.

Stability Analsais
One of the main objectives of this test program was an evaluation of the effect on seal performance of varying
the radial seal clearance. A comparison of the stability of the two seal configurations at the different radial
clearances satisfies that objective. Since a direct comparison of the coefficients of the two seals does not
show any clear stability advantage or the overall effect of a change in the radial seal clearance, another
method of comparison must be used. One method in which the dynamic coefficients of the two seals can be
directly compared is through their respective non-dimensional whirl frequency ratios. Whirl frequency ratio
i defined by

Whirl frequency ratio = k/Cw = (fy

where w is the running speed, and nf is the ratio of the destabilizing influence of the cross-coupled stiffness
and the stabilizing influence of direct damping. Faom a stability viewpoint, a minimum whirl ratio is
desirable. Figure 15 shows the whirl frequency ratio versus inlet circumferential velocity ratio for the seal
clearances of table 1. For teeth-os-rotor seals, the figure shows that, as the clearance increases, the seal
becomes more stable. For teeth-on-stator seals the opposite is true; as clearance increases the seal becomes
les stable, for the positive inlet circumferential velocity case. The figure also shows that the teeth-on-stator
seals are more stable that the teeth-on-rotor seals for the positive inlet circumferential velocity ratio, as was
found previously [91.

"%'
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Comparison to theory of 1131
Figures 10 and 17 provide a brief comparison of the present theory to the theory of Childs and Scharrer 1i3].
Figure 16 shows cross-coupled stiffns venus pressure ratio for a teeth-on-rotor labyrinth seal at 16,000
cpm, and demonstrates that the present theory follows the experimental data more closely than the former
theory 113]. Similarly, Agure 17 shows that the present theory also follows the experimental data for direct
damping more closely than the former theory 113].

CONCLUSIONS
Test results have been presented for stffnem and damping coefficients for six 'e-through labyrinth seals,
three with teeth an the rotor and three with teeth on the stator. The seals were tested under identical
operating conditions to investigate the influence of rotor speed and the effect of varying the radial seal
clearance on the rotordynamk coefficients. These experimental results were compared to the predictions
from the new anasis presented in Part 1 of this paper.

The experimental results of the previous section support the following conclusions:
(1) For teeth-os-rotor seals, the direct damping increases as clearance increases; for teeth-on-stator

seals, the direct damping decreases as clearances increases.
(2) Direct etifnss is negative and increases as clearances increases, for both seal configurations. Cross-

coupled stiffnees showed no consistent trend with respect to clearance changes.
(3) Direct stiffness and direct damping show little or no sensitivity to rotor speed up to 16,000 cpm.

Crose-coupled stiffness shows a sharp upswing at higher rotor speeds, for a teeth-on-rotor seal. Cross-coupled
stiffness decrease as rotor speed increases, for a teeth-on-stator seal.

(4) Aj clearance decreases, toeth-on-rotor seals become less stable and teeth-on-stator seals become
more stable, for positive inlet circumferential velocity.

The theoretical results of the previous section support the following conclusions:
(1) The theory correctly predicts that direct stiffness is negative and increases as clearance increases, for

both seal configurations. The theory incorrectly predicts an approximately quadratic increase in the direct
stiffness magnitude (becoming more negative) as speed increases. Test results show scant sensitivity.

(2) The theory accurately predicts an increase in cross-coupled stiffnes at high speeds, for a teeth-on-
rotor seal.

(3) For teeth-on-rotor seals, the theory correctly predicts an increase in direct damping for an increase
in clearance. However, the theory incorrectly predicts the same trend for a teeth-enstator seal.

(4) The theory incorrectly predicts an approximately quadratic increase in direct damping with running
speed. Test results show no systematic change in direct damping with running speed.
of (5) A comparison with test results for a teeth-on-rotor seal shows that the theory presented in Part I
of this paper does a better job of predicting cross-coupled stiffness and direct damping than does the theory
of Childs and Scharrer 1131.
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NOMENCLATURE

A Seal orbit radius (L); ilustrated in figure B.
* B Tooth height (L); ilustrated in figure 1.

C~c Direct ad cross-coupled damping coefficients (FT/L)
Cr Radial clearance (L); illustrated in figure 1.
K,k Direct ad cross-coupled, stiffness coefficients (F/L)
F Seal reaction-force (F)
L Tooth pitch (L); illustrated in figure 1.
Pr Sea in"t pressure (F/L2 )
Rs Seal radius (L); ilustrated in figure 1.
XYY Rotor to stato relative displacement components (L)
(Ilf Whirl frweecy ratio
wa Shaft angular velocity (l/T)

Subscrit#
i Value in ith cavity
r Radial component
t Tagential component
zxy Rectangular coordinate directions
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Fig. 1A typical cavity.
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Fig. 2 Test apparatus.
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4 ABSTRACT

A numerical method employing a finite difference approach for calculating

the rotordynamic force on eccentric,whirling, labyrinth seals has been developed.

The SIMPLER algorithm along with QUICK differencing is used to calculate the

flowfield within a seal. A modified bipolar coordinate system accurately describes

the geometry of an eccentric seal. The high Reynolds number k - E turbulence

model is utilized, which can handle subsonic compressible or incompressible flows.

A three-percent eccentric single labyrinth cavity rotating at 5,000 c.p.m. was

investigated with three different inlet swirl conditions, each with and without a

whirl orbit frequency of 2500 c.p.m. The fluid was air with an inlet axial velocity

-,", near Mach 0.2. Detailed force, pressure and shear stress distributions within the

cavity are presented. The results indicate that the pressure component accounts

," "" for 99 percent of the rotordynamic force. Whirl seems to have little effect on the

force, and the downstream tooth of the cavity makes a very significant contribution

to this quantity.
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*NOMENCLATURE

a radius of tooth periphery

b stator radius

c clearance

C convection coefficient

I (turbulence constant

Ct2 turbulence constant

CIA turbulence constant

D diffusion coefficient

dx(i) displacement along general orthogonal coordinate lines

F rotordynamic force

h scale factor

Hi(j) coordinate variation term

k turbulence kinetic energy

I turbulence length scale

L seal cavity pitch

p pressure

P. reference pressure

p" pressure re-defined by Eq. 23

r polar coordinate

s distance

IL xi velocity component

"U, velocity expressed in cartesian tensor notation

U(i) velocity expressed in general orthogonal coordinate system

V x2 velocity component

"- . . .'- . - -. . .. . . .
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W X 3 velocity component

- , general coordinate expressed in cartesian tensor notation

z general orthogonal coordinate

z transformation variable

A flux coefficient

Cp specific heat

e eccentric distance ratio

H stagnation enthalpy

P production of turbulent kinetic energy

Pr Prandtl number
S
S" source term

T temperature

V total velocity

V* reference velocity

a constant

/3 bipolar coordinate parameter

bipolar coordinate parameter

r diffusion coefficient

6,j Kronecker delta

• turbulence energy dissipation

". eccentricity ratio

. polar coordinate

1- viscosity

transformation variable

%- .~



°A.

5

p bipolar coordinate, density

a constant in transport equations

7- stress

r* anisotropic stress

.bipolar coordinate

4'/ general transport quantity

w rotational frequency

. whirling frequency

Subcripts

eff effective (laminar plus turbulent)

" index

in inlet

Sj index

I index

lain laminar

out exit

r radial

t tangential

B bottom face of cell

E east face of cell

N north face of cell

P p-cell node

S south face of cell

T top face of cell

"V west face of cell

-- %

¢ ' .



Superscript

-* nondimnensional quantity
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INTRODUCTION

Labyrinth seals are usually used in pumps, compressors, and turbines to limit

internal leakage. The labyrinth seal was first applied in a steam turbine near the

turn of the century. The idea was to create a flow path between high and low

pressure zones that would convert pressure head into kinetic energy, which was then

dissipated. This was accomplished by a series of cavities. The restriction between

each pair of cavities in the flow path converts the pressure head into mean flow

kinetic energy, and the expansion in the flow path dissipates the kinetic energy by

viscous losses. Figure 1 shows a bank of generic labyrinth cavities and the resulting

streamlines due to leakage. Although seals are very successful in limiting internal

leakage, they are one of the sources of the self-excited vibration of the turbomachine

rotor.

Self-excited vibration is generally subsynchronous, i.e. the rotor whirls within0

it's housing at a frequency below the rotational frequency. This vibration limits

operating speeds and can be extremely destructive to the turbomachine. Although

the physics of the shaft vibration is understood, a quantitative analysis of the forces

which cause the excitation is not complete. The cause of self vibration is a net force

imbalance on the rotor, and this imbalance occurs when the rotor is displaced from

the geometric center of its housing.

Numerous attempts to analyze the destabilizing forces due to leakage through

labyrinth seals have been made. Analytical, numerical, and experimental investi-

gations have been conducted. Most of the analytical models are complex and use

restrictive assumptions. Fujikawa '1] and Jenny [21 used a two-control-volume ana-

lytical approach, and both used empirical data extensively. Iwatsubo [3] considered

time dependent flow area change, but neglected area change in the circumferential
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direction. Recently, Childs [4,5,6) improved lwatsubo's [3] method and obtained

improved results. Kurohashi [7] introduced a variable flow coefficient for annular seals

and obtained reasonable results for the cross-coupled force. The fluid mechan-

ics associated with an eccentric labyrinth seal may be too complex to accurately

model using an analytical method. Dietzen and Nordman [8] used a finite difference

method in conjuction with a perturbation analysis to determine force coefficients

for annular seals. Although the method appears to be promising, the author did

not compute labyrinth seals. Baumgartner [9, used analytical methods to simplify

the equations, which were then solved numerically. Tam and Przekwas [10] used

a full three-dimensional finite difference analysis and obtained the most detailed

results to date.

Experimental measurements of the rotordynamic coefficients associated with

labyrinth seals are quite scarce. Wachter and Benckert [11,12,131 were the first

to measure stiffness coefficients, but much of the results are for nonrotating seals.

Wright [14] measured single cavity seals with teeth on the rotor. Childs [4,5,6]

appears to have obtained the most comprehensive set of measurements. Rotational

speed, inlet swirl velocity, and pressure drop across the seals were all varied in

these measurements. Seals with teeth on the rotor as well qs teeth on the stator

were used. Rajakumar [15] measured pressure in the circumferential direction and

measured forces at large eccentricities.

COMPUTATIONAL APPROACH

For the present study it has been assumed that the shaft undergoes a circular

whirl orbit, the center of which coincides with that of the housing. Further, a

single cavity of a multi-cavity seal of teeth-on-rotor design as shown in Figure 1 is

considered. Note that the periphery of the teeth and the base of the seal cavity are

W"i

-a.1

a- -

" "" a" "" " " • % " -" ° -" - -.-. "-.. . . . "- ' "- a" • "" .% " ' % a . * "- - % - . a '
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concentric. Thus, cylindrical coordinates are well suited to describe the geometry

within the seal cavity. However, in the tooth clearance region outside of the cavity,

bipolar coordinates are used because of the eccentricity of the shaft. Specifically,

it is the modified bipolar coordinates which were choosen because they reduce to

cylindrical coordinates in the limit as eccentricity approaches zero. Figure 2 shows

such a finite difference grid within the gap region.

Wood [16] used modified bipolar coordinates to solve the fluid dynamics

associated with eccentric rotating cylinders in general. Consider two circular

cylinders of radii a and b. Let the centers of the two cylinders be a distance ae:,'

apart. If the eccentricity e and the clearance c are defined as

ae: - (1)
.-? c

and

c (b - a) (2)

then modified bipolar coordinates are defined by the transformation
"Z = ( + (3)

. (3)
1 + "

z reiO  (4)

' pd io (5)

where

-2e[(b/a) 2 - E-c2 + ,/(b 2 /a2 -1 - 2 )2 - 4E2
1

- 1  (6)

and
.. b/a_ 4- -_- (7= l (7)

1 - (b/a)j -

o. - .... 4.*.

- 4.
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Figure 3 shows the geometry and coordinate system associated with modified

bipolar coordinates. Curves of constant p are circles in the modified bipolar

- . coordinate system. The inner circle is p = 1, and the outer is p = 3. The conformal

. transformation shown above provides a method to transform any point (p, 0) in the

modified bipolar coordinate system into an equivalent point (r, 6) in the cylindrical

coordinate system.

The transport equations to be solved are presented in Cartesian tensor notation.

Neglecting body forces, the steady-state continuity and momentum equations are

=O(pU) 0 (8)

Oxi

O(pU U3 ) lOp &i(,-,-.v -(9)
Oxi Oxj Oai

where p, U,, and p are the time averaged density, velocity and pressure. The

.-Reynolds stresses are determined by the k - E turbulence model. The turbulent

- energy and energy dissipation transport equations are

O(p, ik) O( /I! O ) +  P  c (10)

O (pUO) o ( j O

""U" ef) = 0 (L ,) + (CIP - C, 2p) (11)
.Ox Oxi Of ax, k

where the stress is calculated using

v- 01U, OU, 2 OUt
Iyff(" + )+ -(pk + [=eff )bj (12)

x, (x1 3 axj

The production of kinetic energy and the effective viscosity are given by

-O (13)
Ox,

, 2

C. (,pk
SJPeff - p (14)

6dv
w..'..........
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The constants C,,, Ce1 , C, 2 , 9k, and a., are given values of .09,1.44,1.92,1.0,

and 1.217. This is in accordance with the standard !, - model investigated by

Launder and Spalding [17]. For inlet Mach numbers greater than 0.3, the energy

equation must also be employed. The stagnation enthalpy form

a(pUiH) _ (r OH 0 a V2

-(H~- =-[UrI, - r1() (15)

is included where
Juef f- rH - (16)
Pr

Static temperature is calculated using

H v

T 2 (17)
Cp

The above equations can be transformed into relations using general orthogonal

coordinates. Pope [18] suggests such a procedure using general tensor notation.

Under this procedure the equations retain their original form and simplicity as much

as possible, and they remain in a form where each term has physical significance.

The divergence operator V(i) and coordinate variation term Hi(j) needed to

transform the transport equations into general orthogonal coordinates are

V~i) h, Ihj (18)
Ihi dz(i) h,

H1 Oh, (19)
- hihj ax,

Here hi represent scale factors and {hi is the product of the scale factors.

Following Pope's 18' transformation procedure. the transport equations become

V(i)pW(i)1  0 (20)

°%Z.
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V(i9PU(i)U(j) + r*(ij)']=- + H,1 (j)[pU(i)U(i) + r(ii) (21)49a(j) (1
:, - H,(i)[pU(i)U(j) + r(ij)]

MV(i)[pU(i),' - 5 = So (22)

The last equation is a general transport equation for any quantity V,. Note that

the isotropic component of stress has been added to the pressure giving

2 2
p = p+ -pk + -#,fV((23)

and r" has the anisotropic stress as

• iOu(i) aU(j).- r'(ij) [ - I ) + - U(i)Hi(j) - 17(.)Hj(i) + 2U(1)Hi(1)ij] (24)

The production of turbulent energy becomes

P U(j) Hj(i) + U(1)Hj(I)bjj]
"-" (25)

- - [pk + ef f V(i)U(i)]V(l)U(I)

3

after the transformation to general orthogonal coordinates. All of the transport

equations can be written as

• V(1)[pU(1)g' - r ,)0z) + V(2)[pU(2)V' - " _-2) (26)
+ V(3)[pU(3) ' - 3) = S,,

* where all r(,) and S, are defined in Table 1 for the appropriate 4, and U, V, I

correspond to U(1), U(2),U(3).

The algebraic finite difference equations can be easily derived by applying the

* Gauss Divergence theorem to Eq. 26. The integration is performed over the entire

% %°

* -4
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control volume. Figure 4 depicts a general three-dimensional control volume. The

variable k is stored at nodes P,N,S,E,W,T, and B. Applying the theorem yields

pu(1)o - r. d(2)d(3)] + [f f2

r. ~Ldx(I)dx(3)] + j~pU(3),b - r. Ldx(l)dax(2)] += (27)

j 3 2.

where the left side contains convection and diffusion and the right-hand side

contains the source term. This form is similar to that for Cartesian coordinates.

Note that dz(1),dz(2), and dx(3) are physical lengths in the general orthogonal

*coordinate system. Thus, the appropriate scale factors are required to compute the

integrals. Upon integration the resulting algebraic finite difference equation is of

the form

U 'P(AN + As + AE + Aw + AT + AB) = ANON + As s

+AEVE + Aww + ATOT + ABOB + (S*)pV(2ol

It is well known that the hybrid differencing scheme produces false diffusion

under certain conditions when large control volume Peclet numbers exist. False

diffusion occurs if the streamlines of the flowfield are oblique to the grid lines and

a nonzero gradient of the dependent variable normal to the flow exists. This false

diffusion is a truncation error in the finite difference formulation. The QUICK

differencing scheme of Leonard [19] generally reduces false diffusion. Rhode et al

20, have previously implemented QUICK into a two-dimensional labyrinth seal

code. Substitution of the corresponding interpolation functions into Eq. 27 , or use

,"2., ",-.: "," '. ,.':'.:-" :'.",'_ ,-.-"-',':.". ":'.:-.' "-:-.'z-'..,-'.'-',','. . . '.'.."".' '..- "'"4:& ;" "," ,L%"
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of the hybrid upwind-central differencing scheme, yields

E, A,j' + Su (9

Fj A - Sp

where i =E,W,N,S,T,B,EE,WW,NN,SS and the last four neighbors are not needed

if the hybrid scheme is used.

A system of staggered grids is used to store the variables of interest as is done in

the TEACH code [211. The values of pressure, turbulent kinetic energy, turbulence

dissipation, and enthalpy are stored at the intersection points of the primary grid,

whereas each velocity component is stored on a separate grid.

The boundary conditions play an extremely important role in determining

the solution to flow in the labyrinth seal. Wall functions based on the log

law of the wall are used to determine the appropriate shear stress near a wall.

Axial velocity, circumferential velocity, turbulence kinetic energy, and turbulence

dissipation profiles were prescribed at the inlet. All of these inlet profiles were

assumed to be uniform radially. The magnitude of these quantities, except for

circumferential velocity, was determined by executing the program with equivalent

conditions at the inlet and er.it. This case corresponds to a fully developed, i.e.

"% streamwise periodic cavity. From this computer run the circumferential variation of

inlet axial velocity, turbulence energy, and energy dissipation, due to eccentricity,

were all determined. The inlet circumferential velocity profile was also uniform in

the radial direction and varied from case to case. At the circumferential location of

"• largest clearance, this quantity was specified according to the problem of interest.

All other circumferential locations were given an inlet value such that the swirl

velocitv conserved mass in the circumferential direction. The radial velocity was

set to zero at the inlet for all circumferential locations. Pressure was prescribed at

a, . . %2

• I .-- ". '., 4 * ~ ~ ~ ~ * .p
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one nodal location and its value held constant during the numerical procedure. At

this location pressure had a value of 3 atmospheres. All other pressure nodes were

calculated on a relative basis with respect to this node. The stagnation enthalpy at

the inlet was calculated using the inlet velocities and temperature.

Convection is dominant over diffusion at the exit, and the Hybrid up-

wind/central differencing scheme applied there requires no downstream boundary

values. The axial velocity at the exit was set equal to the axial velocity at the up-

stream node plus a uniformly distributed percentage of the axial velocity increment

required to conserve mass globally.

|4

U

°a

4 4A4 r ,

.. . -, . . . . ' 4*4~* .. 4 4 4 ~ 4 - - ' 4~.'
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RESULTS AND DISCUSSION

The first cavity of a multi-cavity seal is considered throughout this work.

Figure 5 depicts the cavity and shows the relevant dimensions. These dimensions

were chosen because they constitute a generic cavity which is somewhat similar

to those used in high performance turbomachines. Further, this geometry can be

modelled with a uniform grid within the cavity. Due to the coordinate system

arrangement the grid must be nonuniform in the gap region. Minimizing the

grid nonuniformity as much as possible was desireable in aiding convergence. The

eccentricity of the rotor was three percent of the clearance c in this analysis.

-" Computational Characteristics

A total of six converged solutions were obtained. In all six cases the rotational

speed of the rotor was 5,000 cpm. The working fluid was air at 3.0 atm. and

294 K at the inlet. The axial Reynolds number Re = 2U,,c/v in all cases was

19,200, which corresponds to a Mach number near 0.2. The inlet conditions in

all six cases were identical except for swirl velocity. Three different inlet swirl

cases were investigated. These were approximately 30,60, and 90 percent of the

rotational speed of the cavity, which correspond to tangential Reynolds numbers

Reg = 24',,c/v of 1,315, 2,631, and 3,946. Each swirl case was considered with no

whirl as well as half-speed forward whirl, i.e. 2,500 cpm.

A grid dependence study revealed that a grid of 22x22x17 nodes in the x-, r-,

and 9-directions, respectively was sufficient to simulate the flowfield for this seal

problem. Only the number of grid points in the circumferential direction was varied

in the present grid independence study. In order to conserve computer resources,

the number of grid nodes used in the axial and radial directions, 22x22, was chosen

based on extensive previous grid dependence testing [221 at the same Mach number

,4.0

- o
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using a concentric-rotor version of the computer program. Grids of 22x22x11,

22x22x17, and 22x22x25 were all used to solve the eccentric cavity whirling at half

speed. All parameters used in the grid dependence study were similar to those used

in the final computations. The 22x22x17 grid was required to determine the grid

independent value for pressure drop across the cavity. The grid-independent results

are presented in Figure 6.

Results

The distribution of the tangential force component within the cavity can be

observed in Figure 7. This plot clearly shows that the downstream tooth contributes

heavily to the total tangential force. Further, the effect of inlet swirl strength on

this force comiponent is only observed at the downstream tooth. This is attributed

to the fact that the circumferential flow is developing within the cavity so that there

, -is a different pressure distribution at the downstream tooth.

For the cases considered here, the radial force generally decreases slightly with

increasing swirl. Note that this force component is not restoring the rotor to its

original position, but is actually pushing it to larger eccentricities. These same

general trends were measured by Leong [23] at small eccentricities. As with the

tangential force, the flow over the downstream tooth significantly influences the net

radial force as seen in Figure 8. Observe that swirl has little effect on the radial

force distribution and that this force is smallest in the middle of the cavity, as for

the tangential force.

It was determined that the net shear stress contribution to the total net radial

force is less than one percent, as is the case with the net tangential force. As

expected, the shear contribution to the radial force was a minimum when 1'," = 0.6

because this is near the asymptotic value in which case there was negligible ,e stress

N N
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on the south wall.

As observed earlier, the pressure force virtually determined the net forces acting

on a seal. The variation of pressure (relative to a reference value given below)

in the circumferential direction at three locations along the rotor are plotted in

Figures 9 through 11. The locations are on the upstream tooth, in the middle

of the cavity, and on the downstream tooth. The reference pressures used to

nondimensionalize the pressure in the polar plots, are 306,000 Pa, .10,400 P., and

321,800 Pa respectively.

As seen in Figure 9, swirl has little effect on pressure at the upstream tooth.

The distribution of pressure is somewhat symmetrical about the axis through 0 =180

degrees. This symmetry indicates that the tangential force component is smaller

than the radial component at the upstream tooth.

In Figure 10 the pressure values are taken at the middle of the south wall of the

cavity. Symmetry about the same axis is also observed, and swirl had little effect

on this. At this mid-cavity location the tangential and radial forces were earlier

seen to be at a minimum. Thus this circumferential pressure distribution is the

closest to being perfectly symmetrical about the axis through 0 = 180 degrees and

that through 9 =90 degrees.

In Figure 11 the pressure distribution on the downstream tooth is given.

Observe that the pressure distribution is not symmetric at all. This shows the large

pressure forces on the downstream tooth seen earlier in Figures 7 and 8. Higher

inlet swirl values increased this lack of symmetry, which caused an increase in the

tangential force.

Although turbomachines frequently whirl at half-speed, the case of no whirl

has also been studied previously 11.12,13]. The F7 distribution along the cavity

-'A -- ft
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for the no-whirl case was plotted in Figure 12. These results are very similar to

those for half-speed whirl shown in Figure 7. This was expected since for such small

eccentricities the boundary conditions are nearly the same. Figure 13 is the no-

whirl counterpart of Figure 8 for F,. Again, quantitatively as well as qualitatively

the results are very similar to the whirling case.

The Shear Stress

The shear stress distributions along the cavity walls provide previously unavail-

able insight into the basic flowfield. Although they were not found to contribute

significantly to the force components, estimates of these are useful in the develop-

ment of simpler models. Shear stresses are plotted along the wall and in the free

shear layer for a specific theta value. The circumferential variation for a specific

wall location is also given. Thus Figures 14 through 18 can be used to construct

the entire three-dimensional shear stress distribution along the cavity walls and the

free shear layer. Figure 14 shows the points labeled E,F,G, and H which are used
I--"

to denote a specific location in the cavity. For example, wall FG is the south wall

of the cavity, and EH is the free shear layer.

The variation of shear stress along the rotor surface at 0=0 degrees for all

three inlet swirl cases at half-speed whirl can be seen in Figure 15. Although the

-rz component does not vary with inlet swirl, -',-e varies substantially and is largest

for the low inlet swirl case. This is because the Oew/9r term in the expression for

r,, is largest for low inlet swirl, as the shaft tangential velocity is much higher than

that of the fluid. For the case of high inlet swirl, -rr is almost uniform. Note that

*. the stresses are smallest in the corners of the cavity where the turbulence energy

and thus the turbulent viscosity is small.

In Figure 16 the free shear layer stresses are shown. Again, r,. does not vary

e"
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with inlet swirl, and stress rro is fairly uniform for the high swirl case. The rO,

stress is highest near the upstream tooth, as this is again a region of very large

OWlar.

The shear stresses along the west wall of the cavity at 0=0 degrees can be seen

in Figure 17. Stress r=, does not vary with inlet swirl, and r~e is largest for the

low inlet swirl case as expected. Stress rze is rather uniform for high swirl, and

the maximum value of r. occurs near the shear layer. The shear stresses along

the east wall of the cavity at 0=0 degrees are presented in Figure 18. The basic

characteristics are generally similar to those in Figure 17. That is r,-, does not vary

[ with inlet swirl, and r2, is largest for low inlet swirl. The maximum of stress r,, is

near the shear layer due to the high turbulence level there.
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CONCLUSIONS

A computer program has been developed for the prediction of rotordynamic

forces on an eccentric whirling cavity. Eccentricity, shaft speed, whirl rate, and

various inlet conditions can be specified by the user. This work demonstrated that

U numerical methods can be used to determine rotordynamic forces on iabryinth seals,

as well as the bulk flow analytic models used in the past. The solution obtained from

the computer code appeared to be reasonable and contained the expected flowfield

features. Comparison of forces with Leong [22] showed qualitative agreement.

Unfortunately, force measurements for a single teeth-on-rotor labyrinth cavity are

not available for quantitative comparison. However, multi-cavity predictions for

comparison with measurements are forthcoming.

For the present case of one generic cavity at three percent eccentricity, rotating

at 5,000 r.p.m., whirling at 2,500 r.p.m., and with an inlet axial velocity near Mach

0.2, the following can be asserted:

1. An increase in inlet swirl velocity increased the tangential force. The

direction of the force would accelerate the whirl.

U 2. The largest contribution by far to the total tangential force was from the

pressure imbalance on the periphery of the downstream tooth. It is expected

that the tangential force can be affected by altering the geometry of the cavity

at the downstream tooth. Specifically, the thickness and/or geometry of the tooth

periphery is apparently a very important consideration when one is designing a bank

of labyrinth seal cavities in high performance turbomachinery where rotordynamic

instabilities are a problem.

3. The radial force was not restoring the shaft, but was pushing the shaft to

larger eccentricities.
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4. The shear stress made little, nearly one percent, contribution to the total

tangential and radial force.

5. Whirl had a very small effect on the forces.
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ABSTRACT

A finite difference method for determining rotordynamic forces on an eccentric

whirling labyrinth cavity has been developed. A coordinate transformation was

applied to the turbulent flow Navier-Stokes equations in order to use the modified

bipolar coordinate system. The SIMPLER algorithm with QUICK differencing and

the high Reynolds number k-c turbulence model are used to compute the complex

turbulent flowfield. A circular whirl orbit about the geometric center of the housing

was specified for simplicity. For the cases considered, the radial and tangential

force components increased and decreased, respectively, with increasing inlet swirl.

Also, circumferential pressure variations are included for enhanced insight into the

flowfield. Further, the circumferential variation of both shear stress components

along each surface of the cavity are presented to allow the developers of various
...

bulk flow models to refine their stress modelling.
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NOMENCLATURE

a radius of tooth periphery

dx(i) displacement along general orthogonal coordinate lines

F rotordynamic force

h scale factor

Hi(j) coordinate variation term

k turbulence kinetic energy

L seal cavity pitch

p pressure

: ppressure re-defined by Eq. 9

r polar coordinate

s distance

.-U x velocity component

Ui velocity expressed in cartesian tensor notation

U(i) velocity expressed in general orthogonal coordinate system

V X2 velocity component

II x3 velocity component

"X, general coordinate expressed in cartesian tensor notation

X? general orthogonal coordinate

A flux coefficient

SP source term

S" source term

r diffusion coefficient

6,j Kronecker delta

turbulence energy dissipation

%-
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6 .polar coordinate

viscosity

p density

stress

anisotropic stress

general transport quantity

w rotational frequency

Subscripts

eff effective (laminar plus turbulent)

.i index

in inlet

j index

1 index

out out

r radial

sh shaft

" tangential

B bottom face of cell

E east face of cell

N north face of cell

P p-cell node

S south face of cell

T top face of cell

•W west face of cell

Superscript

-Zf1
*+i~
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* nondimensional quantity

U

.1~

P.
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-p
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INTRODUCTION

,h Self-excited vibration remains a serious problem encountered in high perfor-

mance turbomachines. A complete quantitative analysis of the excitation forces

causing such vibration is still not comAete. The excitation forces result from the

displacement of the rotor from its geometric center in the housing. This displace-

ment often results from a small mass imbalance on the rotor. The result of the

self-excited forces is usually subsynchronous whirl. Subsynchronous whirl (whirling

at a frequency below the rotational frequency of the shaft) may occur in the same

direction as the shaft rotation or in the opposite direction. One source of these

self--excited forces is labyrinth seals.

Labyrinth seals are used to limit internal leakage from high to adjacent low

<.[. pressure regions in a turbomachine. They consist of a highly frictional flow path

" between the rotor and stator. The flow path converts pressure head into mean flow

%. kinetic energy, which is dissipated by viscous losses. Figure 1 shows the streamlines

within a short bank of labyrinth cavities.

A number of analytical investigations on the destablizing forces generated by

the leakage flow through labyrinth seals have been performed. Many of the analvti-

cal methods employ bulk flow models and use numerous empirical correlations. The

problem was first modelled by Alford [1], who neglected circumferential flow, result-

ing in no predicted force. The calculations of Kostyuk [2] neglected the change of

chamber area due to rotor eccentricity and contradicted various force measurements.

Iwatsubo [3,4] extended Kostyuk's model to include this chamber area variation.

Childs and Scharrer [5] included this variation and developed improved shear stress

relationships. They obtained generally improved predictions. These investigators

also presented [6] the first complete set of separate experimental values for the

0
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stiffness and damping coefficients.

Only very recently has Computational Fluid Dynamics CFD been utilized

to predict the forces on labyrinth seals. Dietzen and Nordman [7] used it in a

hybrid perturbation/CFD model to solve the Navier-Stokes equations for turbulent

flow. Wyssman [8] was apparently the first to present pressure distributions for

an eccentric-rotor labyrinth cavity from a three-dimensional computation of the

turbulent Navier-Stokes equations. These along with velocity distributions given

. by Wyssman, et al [9] were used to develop a special two-control-volume bulk-flow

model. Tam, et al [10] used a three-dimensional CFD code to compute the forces

in non-labyrinth, i.e. annular seals.

NUMERICAL MODEL

In this study the whirl orbit has been idealized as circular motion, the center

of which coincides with that of the housing. A single cavity of a multi-cavity seal

of teeth-on-rotor design is analyzed. Since the tooth perimeter is concentric with

the base of the seal cavity, cylindrical coordinates are the natural choice within

the seal cavity. However, in the clearance region between the teeth and the stator,

bipolar coordinates are used because of the eccentricity of the shaft. Specifically,

the modified bipolar coordinate system was selected as it becomes the cylindrical

coordinate system in the limit as eccentricity approaches zero. Figure 2 shows

such a finite difference grid within the clearance region. Reference [11] gives details

concerning the modified bipolar coordinate system.

Neglecting body forces, the steady-state continuity and momentum equations

Vare

-.- 0 (1)

- w")
ax 0
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O9(puiuj) _ I Op - re, (2)
OOxj Ox

i,. .,

wher ppV U, an pp arOh im-vrge est, vlct n rsue h

Reynolds stresses are determined by the high Reynolds number k - f turbulence

N-I model.

% The equations were transformed into relations involving general orthogonal

coordinates, using Pope's [121 method. With his transformation procedure the

equations retain their original form and simplicity as much as possible.

,.-'- Consider a general orthogonal coordinate system where the orthogonal coordi-

nates are denoted by x'. Distances in this system can be related to the Cartesian

system by the scale factors hi,

(ds)2 = (hdx')2 = [dx(i)]2  (3)

where the scale factors hi are excluded from the summation convention. Thus,

the physical displacements along a coordinate line z' in the general orthogonal

coordinate system are dx(i). The scale factors are determined by

"-" h OE OZh (4)S O
where il are the coordinates in the Cartesian coordinate system. Pope's diver-

gence operator V(i) and coordinate variation term Hj(j) needed to transform the
"." transport equations into general orthogonal coordinates are

"0

hi, a Ih(

1i Ox(i) h,

1 Oh,
H,(j) - 3 O(6)

hill) (k
%
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* Here hi represent scale factors and [hi is the product of the scale factors. After

performing the transformation, the mass and momentum equations become

V(i)[pU(i)] = 0 (7)

l and
V(i)[pU(i)U(j) + ,r(ij)] = OP + Hj(j)[pU(i)U(i) + r((ii)]v. o(j) (8)

- Hj(i)[pU(i)U(j) + -'(ij)]

The isotropic component of stress has been added to the pressure giving

p= p+ 2 pk + -#,ffV(i)U(i) (9)

where -r* has the anisotropic stress as
Sov(i) ou(j)

"r*(ij) = - 15;() + OU(i) U(i)Hi(j) - U(j)Hj(i) + 2U(1)Hj(l)6j] (10)

All of the transport equations can be written as

v(1)[pu(1)v - r.() o ] + V(2)[pU(2)Vk - r,(2)'o-

+ V(3)[pU(3)V, - (3)_-__ = s ()
8)(3)

where all r(ij) and Sp are defined in reference [11] for the appropriate Vk, and

U, V, W correspond to U(1), U(2), U(3).

The algebraic finite difference equations can be easily derived by applying the

Gauss Divergence theorem to Eq. 11. Further details are available in reference [11].

Figure 2 shows the modified bipolar coordinate portion of the grid. Observe that

dx(1),dx(2), and dx(3) are physical lengths in the general orthogonal coordinate

system. Upon integration the resulting algebraic finite difference equation is of the

form
_'p(Ar, - As + AF + Aw + AT + AB) ANII'N + AsV's

(12)
-+-AEV'E + AwV'w + ATV'T + ABB S + (SVt')pvI

.' . ..°
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The hybrid upwind/central differencing scheme yields false diffusion under

certain conditions when large control volume Peclet numbers occur. False diffusion

error arises if the streamlines are oblique to the grid lines and a nonzero gradient of

the dependent variable normal to the flow exists. The QUICK differencing scheme

of Leonard [13] generally reduces false diffusion. Rhode et al [14] have previously

implemented QUICK into an axisymmetric computer code from which this program

was developed. The three-point interpolation expression for the west face of the

control volume on a uniform grid is shown in Figure 3 and is calculated by

Ow -(VIP + Vw)- -(O -2p + tw) (13)
2 8

if Uw is negative and

,w ( p + Vw) - 8(p -2-w + ww) (14)

if Uw is positive. T1 interpolation functions were modified for any non-uniform

grid. Substitution of these interpolation functions into Eq. 12, or use of the hybrid

differencing scheme yields

Ei Aii~ + Su
wher j A- ZA-§p (5

where i =E,W,N,S,T,B,EE,WW,NN,SS and the last four neighbors are not needed

* in thL hybrid scheme.

As is done in the TEACH code [15], the variables were stored on a system of

four staggered grids. The values of pressure, turbulent kinetic energy, turbulence

dissipation, and enthalpy were stored at the intersection points of the primary grid,

whereas each velocity component was stored on a separate grid.

Wall functions were used to determine the appropriate shear stress near

• a wall. A radially unifrom profile of axial velocity, circumferential velocity,

'.A, '-.]P . 7P

I"- . I
,0.

... * - -- - - - . .-. -- - - . --- . -. -.. . -



turbulence kinetic energy, and turbulence dissipation was prescribed at the inlet.

The circumferential variation of each was determined from a preliminary computer

run. For that run, the inlet value of each variable, except pressure and swirl velocity,

was set equal to the corresponding outlet value from the previous iteration. This

case corresponds to a fully developed, i.e. streamwise periodic cavity. The inlet

circumferential velocity profile was also uniform in the radial direction. At the

circumferential location of largest clearance, this quantity was specified according

to the problem of interest. All other circumferential locations were given an inlet

value such that the swirl velocity conserved mass in the circumferential direction.

Pressure was prescribed at one point in the domain.

The solution strategy employed is the well documented SIMPLER procedure.

A line solver is used to solve for each variable of interest. This line solver is applied

in the 0-direction in the cylindrical coordinate system and in the 0--direction in the

modified bipolar coordinate system. The re-entrant or cyclic boundary condition

is utilized. The assembled equations are written in the form

£ -ATO'T + (Ap - Sp)Op - AB' = S. + Aj (16)

where i =N,S,E,W,NN,SS,EE,WW. Application of Eq. 16 to each grid circle leads

to a matrix that is solved using a CTDMA algorithm. Each grid circle throughout

the domain is solved in this manner.

I L k C ... .
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DISCUSSION

Figure 4 shows the cavity and the relevant dimensions. Minimizing the grid

nonuniformity was desireable in aiding convergence. The eccentricity of the rotor

was three percent of the clearance c in this analysis.

TheFlowfieldsConsidered

Three different inlet swirl cases were investigated: 30,60, and 90 percent of

the rotational speed of the cavity. The rotational speed of the rotor was 5,000

cpm and the working fluid was air at 3.0 atm. and 294 K at the inlet. The axial

Reynolds number Re, = 2Ui,,c/v in all cases was 19,200, which corresponds to a

Mach number near 0.2. The inlet conditions were identical for each case except for

swirl velocity. Each swirl case was considered with no whirl as well as half-speed

forward whirl at 2,500 cpm.

A grid of 22x22x17 nodes in the x-, r-, and 8-directions, was found in a

grid-dependence study to be sufficient to simulate the flowfield for this problem.

A considerably finer grid is required, however, for higher Mach number cases.

'- In order to conserve computer resources, the number of grid nodes, used in the

axial and radial directions, 22x22, was determined in conjuction with previous grid

dependence testing [16] at the same Mach number.

For the present computer runs, it was found that the radial component of

the net force was much larger than the tangential component. Inasmuch as
the tangential component is a very small value here, it meandered somewhat

' (approximately + 8 percent) with further iterations beyond the point of convergence

-- for other quantities.

Results
The rotor in actual turbomachines has frequently become unstable with the

%m% %

0%'

. •4•

. . ..0. . .. . . - - . - . .
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shaft whirling.at a frequency approximately half of the rotational frequency. Results

for this important case of half-speed whirl are considered here. The net tangential

force acting on the eccentric whirling shaft is of considerable interest because it is

the driving force for the whirl phenomenon. In Figure 5 the effect of inlet swirl

strength on the net tangential force can be seen. The total net tangential force

contains contributions from both pressure and shear forces. As expected from the

literature, increasing swirl increases the driving force behind the rotordynamic whirl.

The contribution of shear forces to the total net tangential force is seen in

Figure 6. From the quantitative result in Figures 5 and 6 it is obvious that the

shear component of the net tangential force is less than one percent. The other 99

percent is from the net pressure force due to the circumferential pressure distribution

around the cavity. Observe that the south wall(cavity base) contribution is less than

* zero and the others are greater than zero. This gives a cancellation and a small

total shear force. Also, note that the south wall shear was the only one significantly

influenced by a change in inlet swirl.

While a positive tangential force is a whirl driving force, a negative radial force

is a restoring force. The effect of inlet swirl on the total net radial force can be seen

-' in Figure 7. The radial force generally decreases slightly with increasing swirl. It is

about four times larger than the tangential force. Note that the force is not restoring

the rotor to its original position, but is actually pushing it to larger eccentricities.

These same general trends were measured by Leong [17] at small eccentricities.

It was determined from Figures 7 and 8 that the net shear stress contribution

to the total net radial force is less than one percent, as is the case with the net

tangential force. Figure 8 also shows that all radial shear force components were

invariant with swirl, except at the south wall. As expected, the shear contribution
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to the radial force there was a minimum when Wi*,, = 0.6 because this is near the

asymptotic value in which case there was negligible -re stress on the south wall.

Since the pressure force virtually determines the net forces acting on a seal, the

variation of pressure (relative to a reference of 306,000 Pa) in the circumferential

direction at two locations along the rotor are plotted. In Figure 9 the pressure

values are taken at the middle of the south wall of the cavity. Symmetry about

the axis through 0=180 degrees is observed indicating a very small contribution

to Ft, and swirl had little effect on this. In Figure 10 the pressure distribution

on the downstream tooth is given. Observe that here the pressure distribution is

not symmetric at all through this axis, contributing substantially to Ft. Higher

inlet swirl values produced this lack of symmetry, which caused an increase in the

tangential force.

The case of no whirl has also been studied previously. The current results for

the non-whirling case are very similar to those shown for half-speed whirl. This

was expected since for such small eccentricities the boundary conditions are nearly

the same.

.-. - The development of circumferential velocity within a bank of labyrinth cavities

has been of interest for some time because, as shown above, swirl has a substantial

influence on the forces generated by an eccentric seal. The circumferential variation

of swirl at the inlet and exit for the case of lowest inlet swirl is given in Figure 11.

The swirl increased in this case from the inlet to exit by about seven percent. This

• was expected since the inlet swirl was below the fully developed (i.e. asymptotic)

value. Notice that the peak of the distribution shifted circumferentially nearly 25

degrees. This is attributed to the eccentricity and swirl development. For the

-0 intermediate inlet swirl case of W* 0.6, the swirl velocity increased by four

" " . t4
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percent. Since this value of inlet swirl is closer to the asymptotic limit, there was

less of an increase. The peak value shifted only about 12 degrees, in this instance.

For the largest inlet swirl case, the swirl changed little in magnitude and shifted

about 12 degrees.

The development of axial velocity through the cavity was also examined. This

* - development for all three inlet swirl cases is presented in Figure 12. In each case

the axial velocity inlet profile was exactly identical, and all three cases produced

S the same exit axial velocity. The exit axial velocity was almost symmetric about

an axis through 8 =180 degrees. For the present inlet Mach number, the velocity

increased by about two percent from inlet to exit.

The velocity, pressure, turbulence energy and turbulence dissipation distribu-

tions give additional insight into the flowfield within the cavity which is useful to

the developers of of simpler models. Reference [18] contains profile plots of these

quantities. These plots are for the intermediate inlet swirl case with half-speed

whirl. The velocity distributions within the cavity were quite similar to those pro-

duced by Rhode and Sobolik [14] for a concentric-rotor seal. The velocity did not

vary greatly circumferentially. This can be expected since the eccentricity was only

three percent. The axial velocity component shows significantly more circumferen-

tial variation than the other two velocity components.

Although they do not contribute significantly to the force components, shear

stress distributions are needed in the development of simpler models. Shear stresses

are plotted along each wall as well as the free shear layer for 8=0 in Reference

[111. The corresponding circumferential variation of these quantities at a location

midpoint along each surface is given here. Thus the two sets of figures together can

be used to approximate the entire three-dimensional shear stress distribution along

%'..
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the cavity walls and the free shear layer.

The circumferential variation of the above shear stresses for a location midway

along each respective plane is shown in Figures 13 through 16. The 'reseg in

Figure 13 are for the midpoint along the south wall of the cavity. Stress r,z is

independent of inlet swirl and exhibits a minimum at 0=180 degrees due to the

..: lower axial velocity at that 0-location (most of the leakage flow is near 0=0). Stress

To was fairly invariant with 0, but swirl affected the magnitude of re as found in

the previous figures.

The shear stresses midway along the free shear layer are plotted in Figure

* 14. As with the corresponding south wall stresses in Figure 13, component ir is

independent of the inlet swirl and has a minimum at 0=180 degrees. Stress 're was

44.... very sinusoidal and decreasing inlet swirl increased the magnitude of the stress, as

expected.

The circumferential variation of east and west wall midpoint shear stresses can

be observed in Figures 15 and 16. For both walls r,, is again independent of inlet

swirl, and exhibits a minimum at 0=180 degrees. Stress 7-0 is nearly uniform with

theta and decreases with increasing inlet swirl.

CONCLUSIONS

* It has been shown that rotordynamic forces on an eccentric whirling labyrinth

A.,. seal can be calculated using this numerical approach. A qualitative comparison of

forces with Leong [17] gave good agreement. Although measurements of the rotor-

* dynamic forces on a single theeth-on-rotor cavity are not available for quantitative

comparisons, numerical simulations of multi-cavity domains in the near future will

allow this.

* The current computational results serve to provide the seal designer with

' 4.

% ^_r
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more complete information about pressure circumferential variation within a cav-

ity. Specifically, the included results quantify the dependence of the tangential

and radial force components on the level of inlet swirl. For the cases considered

here, an i.:c:ease in inlet swirl re-distributed the pressure field to give an increased

tangential force and a decreased radial force. Further, the circumferential pres-

sure distributions presented reveal details concerning the large variation of those

force components with axial location from the mid-cavity location to that of the

downstream tooth.

It was further found that, while there is definitely a net fluid shear force acting

on the rotor, the combined effect of all stresses tend to cancel, giving less than a one

percent contribution to each force component. The circumferential variation of both

wall and "free" shear stresses is presented in order to allow the developers of simpler

flow models to refine their shear stress modeling. The same stress components are

quantified in reference [11] as a function of position along each surface at a fixed

e-location so that an approximate three-dimensional stress field can be constructed

from the two sets of stress data together.

...- A'"
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Fig. 2 An example of a finite difference
grid in the eccentric region of the seal
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NOMENCLATURE

•a, point coefficient
aj neighbor coefficient
A leakage flow area
Ae area of east face of control volume
A,, area of north face of control volume
A, area of west face of control volume
c clearance
Du diffusion coefficient

.5 f turbulence kinetic energy dissipation rate
r diffusion coefficient
k ratio of specific heats
r. turbulence kinetic energy
1 turbulence length scale
rn leakage mass flow rate ,.
M Mach number
p absolute viscosity

* 1-eff effective viscosity
P T turbulent viscosity
P static pressure
P' pressure correction
Pe Peclet number
P bulk averaged pressure
r radial coordinate
R outer stator radius
Re Reynolds number
p density

bulk averaged density
Su source term

' general source term
Ta Taylor number
u axial velocity component
U bulk averaged axial velocity component

4 v radial velocity component
v specific volume
w swirl velocity component 'N
x axial coordinate %I

-..

% " ' . .. ' " S
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S' , -. . - - -. . - "z -'- S. . " Z . " . -. * . . '. '. .-. *. " -" . . % "
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Subscripts
ueb i cavity exit, east face of control volume

E eastern neighbor control volume
EE eastern neighbor of eastern neighbor

cavity inlet
n north face of control volume
N northern neighbor control volume
NN northern neighbor of northern neighbor

S P center control volume
p center of control volume
-. general flow variable
r radial
s south face of control volume
S southern neighbor control volume
SS southern neighbor of southern neighbor
sh shaft
0 circumferential
w west face of control volume

%: W western neighbor control volume
WW western neighbor of the western neighbor
x axial

Superscripts
nondimensionalized, uncorrected value

* I correction value

5
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ABSTRACT

A recently developed version of a swirl-flow finite difference computer program

was improved and employed in predicting the compressible flow of air through

labyrinth seals. The substantial effect of inlet leakage Mach number on grid

sensitivity of the solution is investigated. Further, cavity-by-cavity development of

the flowfield is computed and the distribution of various field variables are presented.

Results are for straight-through seals of both teeth-on-stator and teeth-on-rotor

types. The teeth-on-rotor seal gives less leakage than the equivalent teeth-on-stator

S ,,design. However, it exhibits a greater tendency to generate self excited rotordynamic

forces due to higher swirl velocities. Also, previously unavailable predictions of

swirl velocity development are provided for the refinement of simple models for

S rotordynamic forces.

-° 1
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INTRODUCTION

Labyrinth seals are most commonly used in rotating machinery such as pumps,

compressors and turbines. C. A. Parsons [1] apparently was the first to introduce

the labyrinth seal in his development of the steam turbine near the turn of the

century. Figure 1 shows a straight-through, teeth-on-rotor labyrinth seal.

The sealing objective is to present a highly frictional flow path between high-

and low-pressure regions by means of a series of non-contacting restrictors and

separating chambers. When the fluid enters a seal, it flows through a small

constriction at the first tooth and part of the pressure head is converted into mean

flow kinetic energy. Seals are designed so that a large portion of this kinetic energy

is lost via turbulence dissipation in the chamber immediately downstream. Other

constrictions and chambers follow downstream, where the process is repeated.

Numerous investigators have proposed empirically based relations utilizing

characteristics of the overall flowfield for estimating the leakage rate. Experimental

data such as total pressure drop has been recorded and used to develop these

relationships. Leakage has been expressed as a function of overall pressure drop,

friction factor, seal clearance, tooth thickness, cavity width, shaft speed and number

of teeth. Resulting predictions from these formulas are successful when applied to

seals which are very similar to those which were empirically studied. However,

any significant difference in seal geometry can give considerable error. Therefore,

a more widely applicable method has been sought for seals of arbitrary geometry,

shaft speed, pressure drop, etc.

A numerical algorithm for solving the Navier-Stokes equations is widely apph-

cable for seals. Furthermore, such a computational tool does not require extensive

empirical data as a user input. However, this approach and can be quite expensive.

rAe



I-

1f-Stator Housing

Rotating Surface Z/

Fig. 1 Basic configuration and expected streamline

pattern for a generic straight- through labyrinth seal
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Stoff's investigation [2] of incompressible flow in seals was the first attempt at such

a numerical polution. His work involved an extension of the TEACH computer pro-

pram [3], which constitutes the basic approach used in this study also. Some of the

more recent numerical results are those of Rhode and Sobolik [4] and Sobolik [5]

involving subsonic compressible flow. The current study builds upon that work.

The primary objective of the present research is to predict the flowfield

-. development from cavity to cavity along a labyrinth seal. Secondary objectives

include comparison of swirl velocity and other quantities for corresponding teeth-

on-stator and teeth-on-rotor generic labyrinth seals. The computer code of Sobolik

[51 was extended in various ways in order to achieve these objectives.

Wi
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PREVIOUS WORK

Most of the leakage oriented research has been aimed at developing simple

empirical relationships between the leakage flow rate and the overall pressure drop,

seal geometry, shaft speed and Reynolds number. Details such as velocity profiles

have only very recently become the objective of experimental researchers.

Work done on labyrinth seals can be classified into compressible fluid leakage,

incompressible fluid leakage and rotordyamic instability studies. The paper by

Sneck [61 and the theses by Cogan [7] and Sobilik [5] were invaluable in compiling

this review. The topic of instability is not addressed in this paper, and thus related

studies are not included.

Compressible Fluid Leakage Studies

Martin [8], Stodola [9], Gercke [10], Egli [11], Dolin and Brown [12], Hodkinson

1[3J, Kearton and Keh [14], Zabriskie and Sternlicht [151, Vermes [16], Rao and

Narayanamurthi [17], Deich, et al. [18] and Benvenuti [19] are examples of early

work with compressible flow seals. These studies drew conclusions based on gross

overall characteristics of the flowfield. These researchers made assumptions such as

constant flow area, uniform axial velocity profile or negligible turbulent kinetic

energy carry-over. These assumptions greatly simplify the problem. However,

models developed in this way have been very limited in application.

The first to take detailed measurements of compressible flow in labyrinth seals

was Hauck [20]. He measured the axial and swirl components of velocity in straight-

* through and stepped seals. Velocity profiles were measured both in the cavity as

well as in the leakage region. Hauck's test facility operated at both 4000 and 5000

CPM, and allowed for rotor eccentricity up to 75 percent of the clearance for a
S.'

*t
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concentric rotor.

Appare.tly the first to present a detailed numerical solution for the compress-

ible flowfield within a labyrinth seal were Rhode and Sobolik [4]. A finite difference
.

method was used employing Patankar's [21] SIMPLE (Semi-Implicit Method for

Pressure-Linked Equations) algorithm. Converged solutions were obtained using

each of two different finite differencing schemes: the Hybrid scheme developed by

Spalding [221, and the QUICK scheme developed by Leonard [23]. Zimmermann

and Wolff [24] developed an analytical model for correlation of leakage and pressure-

drop. Previously obtained numerical solutions were used to integrate cavity exit

velocity profiles and compute standard loss coefficients for each cavity.

Kirk [25] developed a relatively simple computer program to calculate the

circumferential swirl and pressure distribution. He computed a nondimensionalized

tangential velocity ratio and compared with previously obtained experimental

results. The experimental data reveals a reduction of swirl, as the flow moves

radially inward, that was not predicted. However, predicted and experimental

results for swirl never differed by more than 25 percent.

Nordmann, et al. [26] also used a finite difference program to simulate flow in

straight-through labyrinth seals. The effort was directed toward the fluid forces and

rotordvnamic coefficients. But they also plotted leakage as a function of pressure

ratio, comparing against previous obtained experimentally results.

Incompressible Fluid Leakage Studies

Jerie [271, Bell and Bergelin [28], Nikitin and Ipatov [29] and Han [30]

are examples of earlier studies dealing with gross overall characteristics. The

conclusions reached by these researchers developed the application of flow and

velocity carry-over coefficients. critical Reynolds number for transition to turbulence

%
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and friction "oefficients.

Three recent studies constitute the first investigations pertaining to detailed

characteristics of velocity and pressure throughout a seal cavity. One was conducted

by Stoff [2]. He used a finite difference computer program descended from the

kTEACH program to solve the Reynolds-averaged Navier-Stokes equations along

with those of the tK - f turbulence model. Predictions as well as experimental

measurements of water in a large scale straight-through seal facility were obtained.

He compared predictions of a single radial profile of mean swirl velocity and rms

swirl velocity with corresponding experimental measurements for an axial station

midway between adjacent teeth.

Rhode. et al. [31] is the second detailed study. That paper reports comparison

predictions of two cavity configurations for a straight-through seal. A more recent

version of a swirl-flow finite difference computer program, also descended from

TEACH, was employed. Detailed radial profiles of the three velocity components,

pressure and turbulence kinetic energy were shown. In addition, a recent convective

differencing scheme was evaluated for numerical stability and accuracy.

Finally, Demko [32-34] conducted a study using both computational and ex-

perimental methods. He presented corresponding predictions and measurements of

selected quantities such as axial and radial velocity and pressure. By investigating

flow at relatively high Taylor numbers (typically Ta> 10') he was able to con-

putationally and experimentally verify the existence of a double recirculation zone

pattern. He presented his results in the form of a flow map which one can use to

predict the existence of either a single versus a double recirculation zone within the

cavity.

[.1
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COMPUTATIONAL APPROACH

General Methodology

The compressible flow program for flow in labyrinth seals is a descendant of the

TEACH program [3]. Seven simultaneous, partial differential equations are solved.

These are: (a) the compressible, axisymmetric form of the Reynolds-averaged

equations for conservation of momentum (with x, r, and 0 time-mean velocity

components u, v, w), (b) the two turbulence transport equations constituting the

K - E turbulence model, (c) the energy equation, and (d) a pressure equation which

determines the pressure field and enforces conservation of mass. Each of these can

be divided into convection, diffusion and source term components and cast in the

general form

-(Pu') + - (pvrd6)

49 ax Ora- .(F =) (1)

Phi is the general dependent variable and 170 is the diffusive coefficient

*. -respective to each equation. For example, in the x-momentum equation 6 = u

and F = L ff. The effects of turbulence are incorporated through modification of

the laminar-flow momentum diffusion coefficient u. The turbulent viscosity pT is

added to p giving an effective viscosity /1 ff which is given by

A eff I'T " '1 (2)

The two-equation K - E model r351 was utilized to evaluate PT.

.....'- ..-......-'."--...-.--..-...-..-...............-............-.'..--.....-..-........-.....-...-'.-..-....--..'..-..-""..-..-....."-.--.-....
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Figure 2 shows the staggered grid system on which the finite difference

equations axe solved. Values for all variables except u and v are stored at the

intersections of the illustrated grid lines, such as point P. The axial and radial

velocity components are stored at locations denoted by arrows. Different control

volumes C, U and V for the variables stored at the p, w and s locations are shown

in Fig. 2. An example of the computational domain that has been chosen for a

labyrinth seal can be seen in Fig. 3.

Each 4 has a corresponding finite-difference equation which was obtained from

Eqn. 1 by applying the Gauss Divergence Theorem and expressing the result

in terms of neighboring grid point values. The incorporation of the differencing

schemes is discussed in Rhode, et al. 131j. As an example, the axial momentum

equation from which u*, a velocity estimate, is computed is

u; = u A+  - sP + Su(3)

To satisfy conservation of mass locally, the values for u* and v* must undergo a

correction. This correction is accomplished using the pressure-correction P' values.

The equation for this quantity is derived from conservation of mass and momentum

and is explained in further detail in a subsequent section. The expression for the

corrected axial velocity formulation is

U ; + Du(P- P) (4)

The radial velocity is corrected similarly. The P' equation takes the form

0,

.4

S:', , - ." .""--'-% -, . .2% "% """% "% . "% % """", """"" ' . % - - - '% % -" "' ° % ' "% '%.''
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4P"=Za aP + S (5)

as discussed in Patankar [21].

For the previously considered incompressible flow cases [31], the flow could

be considered streamwise periodic. Thus, cavity inlet boundary conditions for all

variables excepting pressure were set equal to the newly calculated exit values at

the conclusion of each iteration. Flow at the cavity outlet is strongly convective in

nature, and thus the upwind differencing used there requires no outlet boundary

conditions. For the present compressible flow grid independence cases, the inlet

-: values resulting from the above procedure were adopted in dimensionless form.

Alternately, the cavity-by-cavity development computations used the exit values

from the previous successive cavity as the corresponding inlet values. Further, the

empirically-based law of the wall was used to evaluate normal derivatives of velocity

- tangent to a given wall.

False Diffusion

The upwind differencing scheme has been used extensively, however, it can

introduce false diffusion. rPhis truncation error occurs predominantly ii. flows where

convection domiunates (i.e., where the grid Peclet number iPe! Il exceeds 2.0)
with substantial streamline-to-grid skewness and substantial diffusion normal to the

streamlines.

False diffusion can cause an overly diffusive solution. Recirculating flows are

particularly susceptible to the effects of false diffusion because of the certainty

of considerable velocity gradients and streamline-to-grid skewness. Th. QUICK

(Quadratic Upstream Interpolation for Convective Kinematics) scheme of Leonard

.N

..... ... ... .. .. ... . . .--....-..-.... . . . *. ..-. , ,- ,-.N . ,...,> .N .. ...- - ,;.-.. ,_, .
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[23] was derived with the intention of reducing false diffusion. It employs a three-

rpoint, upwind-shifted interpolation formula. Predictions for turbulent flows by

Leschziner and Rodi [36] and Han et al. [37] have indicated distinct advantages over

,. the Hybrid upwind/central differencing scheme. Moreover, comparisons between

the Hybrid and QUICK .,hemes for incompressible flow in labyzitih seal cavities

by Rhode, et al. [31] for example, showed that the QUICK scheme yielded grid-

independent solutions on considerably coarser grids than for the Hybrid scheme.

aL QUICK has been used in formulating the convective terms of the momentum

equations only. Leschziner and Rodi [361 showed the r and e solutions are not

significantly affected by alternative differencing schemes because of the source-term

dominance of the corresponding transport equations. The . and c source terms

contain the large generation and dissipation effects.

Computational Devolopments

An improved version of the compressible-flow P' equation was developed and

tested. The essence of the modifications are best understood after reviewing a

., derivation of the P' equation for a simple case of one-dimensional axial flow. The

' derivation begins with the discretized form of the steady flow mass conservation

equation

' - (P =)w 0 (6)9.

* Lower case subscripts refer to values at control volume faces. A typical control

*.- volume for P' is shown in Fig. 2 as the C control volume. The mass flux through

* '- the east face. for example, where the p'u, term has been neglected is

6

* °-

-.. - * -. '*o.~* ,* * .

,..'. .. . . . . . .



17

i(PU)e = (p " + P'),.(U + U') = p:u: + pU, + p'u, (7)

The quantities p* and u" are the latest estimates to be corrected via p' and u' in

order to satisfy the mass conservation equation.

The previous version of the program used a formulation for the p' terms using

the ideal gas equation of state which gives

.e 1 ,j , + P) 8
e2(= pE P) 2(RTE RTp

Note that the expression for p,, in Eqn. 8 is the simple arithmetic mean. It

was found in the present study that expressing P' in this way contributed to

numerical instabilities during the iterative solution algorithm. This effect was more

pronounced when the grid lines were non-uniformly distributed within the flow

idomain. An alternative formulation of pC that reduced numerical instabilities when

using non-uniform grids was sought. Several variations were numerically tested for

a labyrinth cavity flowfield. Evaluation of p directly from the ideal gas equation of

state without using a p' quantity was an improvement over the p = p !-p' approach.

This led to an algorithm that is less susceptible to numerical instabilities. The

expression replacing Eqn. 7 is

(PL)e pU( + u')C PeUe + Pe 'e (9)

here p, is formulated using the harmonic mean expression

2 ppPE ,PC = (0l)
PP PE

- .!



18

- From the axial momentum equation, one finds the following expressions [21]

for velocity corrections

Ue D'Pp' P )(11)

Du- Ae

ap

'Upon appropriate east and west face mass flux substitutions into Eqn. 6 the

following difference equation is obtained for P

[AE + Au1P = AEPE' +~ AwPir Arhn (12)

AE p,,,Du,

Ar*= pw - peu:

The P equation used in the current computer program was derived from the

two-dimensional flow mass conservation equation in cylindrical coordinates. The

NOl



19

procedure exactly parallels th.t given here. Appropriately, P= 0 along boundaries

was utilized for boundary conditions.

The TDMA (Tri-Diagonal Matrix Algorithm) is used to solve for the dependent

variable of each finite difference equation in a line-by-line fashion. The previous

version of the code solved for one vertical column at a time, beginning at the west

boundary and sweeping line-by-line to the east boundary. This procedure causes

the inlet boundary condition, usually at the west boundary, to be felt quickly by

interior points of the calculation domain. This desirable effect is greatly enhanced

if the fluid flow is in the same direction as the line-by-line sweeping motion of the

TDMA.

The previous method of solving for vertical columns while sweeping from west

to east tends to work very well in the predominantly straight-through west to

east leakage flow region. It does not, however, efficiently incorporate the effect

of boundary conditions within the recirculation zone of the cavity. For this reason

an ADI sweeping procedure was implemented. It alternates between west-east and

north-south sweeps, solving for vertical columns and horizontal rows, respectively.

In this way, information from the boundary conditions is efficiently transmitted to

all regions of the flow domain.

%
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RESULTS AND DISCUSSION

The Seals Considered

In order to investigate the cavity-by-cavity distribution of various quantities, a

TOS and also a TOR seal were simulated. The TOS cavities had a shaft radius of

0.0725 m, shaft centerline-to-cavity base radius of 0.07609 m and shaft centerline-

to-tooth periphery radius of 0.07291 m. The TOR cavities had a shaft radius of

0.0725 m, a shaft centerline-to-stator radius of 0.07609 m, and shaft centerline to

tooth periphery radius of 0.07568 m. Both seals had a cavity width of 0.002825 m

and a tooth width of 0.00035 m.

" - ." Grid Independence

Figure 4 illustrates the effect of inlet leakage Mach number on grid indepen-

dence. A uniform inlet temperature of 293°K was assumed. After an inlet leakage

Mach number Mi was selected, the inlet stator wall pressure was set to a value

yielding an inlet leakage Reynolds number of Re, = PU, = 2.60 x 104. Ax-

ial velocity and turbulence kinetic energy profiles were computed from a fourth-

order curve fit of an incompressible flow problem previously simulated [31]. The

shaft rotational speed was set to 8000 CPM and the radial distribution of inlet

swirl velocity was taken from the measurements of Stoff [2]. This gives an inlet

Reg = 2.39 x and 6.99 x 10' for the TOS and TOR cavities, respec-

tively, at Mi = 0.2. The respective values at Mi = 0.5 are 9.55 x 103 and 2.19 x 103.

" The variation of cavity bulk pressure drop AP* with inlet Mach number Mi is

shown in Fig. 4 for the teeth-on-stator (TOS) seal design. As expected, Ali 0.2

possesses less grid size dependence than 1i = 0.5. The solution obtained using a

Sii
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35x45 (x and r direction) grid is essentially grid independent near Mi= 0.2. The

change in 4,P" at Mi = 0.2 was approximately five percent in changing from the

20x30 to the 35x45 grid. This will be substantially less for a similar comparison

using 35x45 and 50x60 grids. Observe the increased dependency on grid spacing at

Mi = 0.5. This is attributed to the much higher pressure gradients, and in turn,

density gradients at the higher Mach numbers.

Almost identical behavior was found for the teeth-on-rotor (TOR) design,

which is not shown here. However, the value from the 65x75 grid at Mi = 0.5

for the TOR design is 0.474, whereas the corresponding value for the TOS design

is 0.429. This indicates that the TOR design provides around 10.5 percent greater

flow resistance. Stated differently, for a given AP*, the TOR seal is expected to

give less leakage. This agrees with a corresponding experimental comparison where

both seals contained fifteen cavities of the present design.

Figure 5 shows the streamline pattern in a TOS generic labyrinth seal for

Al, = 0.5. It is similar to that for incompressible flow in a similar generic seal

in the paper by Rhode et al. [313. The reattachment stagnation point in close

.* proximity to the high speed leakage flow region gives rise to large velocity gradients

just upstream of the downstream tooth.

Cavity-by-Cavity Flowfield Development

The following results were obtained by utilizing the finit- difference code to

simulate the flowfield development through a labyrinth seal, one cavity at a time.

Figure 1 illustrates the cavity numbering scheme which is utilized in the following

discussion. At the inlet to the first cavity a leakage Mach number of 0.3 was

assumed. A uniform temperature profile of 300'K was used as well as a uniform

.W•~~-N* *--- *' - ~ *w '
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axial velocity profile. The inlet radial component. of velocity was assumed to be

zero. An inlet axial leakage Reynolds number of 32,000 was assumed. A uniform

inlet profile of turbulence kinetic energy was used and a value of 3 percent of the

mean flow kinetic energy was specified. The shaft speed was set to 9500 RPM.

Results were obtained using two different values of non-dimensional bulk swirl

u1 velocity W " for comparison. The TOS cases were run at 147. of 0.0 and 0.58, while

the TOR cases had 1497 of 0.0 and 0.49. These non-zero inlet swirl cases give an

Reo of 1.29 x 105 and 1.14 x 10
s , respectively. These values of W were selected as

estimates of the inlet swirl resulting from rotating machinery upstream of the seal.

,".> After obtaining a converged solution for the first cavity, the field variable values

at the cavity exit plane are used as inlet values for the next cavity. Thus it was

possible to simulate the flow development along the labyrinth seal by approximating

inlet conditions for the first cavity and then proceeding downstream one cavity at

a time.

For the TOS case of zero inlet swirl, Fig. 6 shows the increase of Wj* with an

almost constant slope. This result will be useful to the developers of simple flow

models for calculating the net rotordynamic force which arises when the rotor is

eccentric with respect to the housing. It is particularly noteworthy in this regard

that the calculation of correct rotordynamic forces is sensitive to the correctly

simulated distribution of TW° . Further there are no previous measurements or

predictions of this distribution so that the developers of simple models have been

unable to verify this aspect of their modeling. Thus it is significant that Fig. 6

shows a slow rate of growth of 11'. In fact, such generic TOS seals with as many

as fifteen cavities never even approach the asymptotic value which is expected to

be slightly less than 0.5. Figure 7 shows a linear decrease for the TOS case of

S.'

:..,[.

* .2 ,.., ' ""'L -. ,., '; -. : . . ',.. -'.,.,r''- :'- .? ." .. . " ."' r" """ . " r" " "" " " ' " " " " " . .



25

0.12

10.10

0.08

Wi 0.06-

b 0.04

0.02-

0.00
1 2 3 4 5

CAVITY

Fig. 6 Cavity-by-cavity development
of dimensionless inlet swirl 147 for TOS

with 1 = 0.0 at the first cavity



26

.,.-

0.60

0.58

, 0.56

0-52

* 0.54

0.50

0.00
1 2 3 4 5

CAVITY

* Fig. 7 Cavity-by-cavity development
%: of dimensionless inlet swirl W* for TOS

with 7 = 0.58 at the first cavity

.

"' ....S.-: J . . .i ~ A ~ qj5l-

,'5 .e " . .. " . . " . . " ' , % ' ' o °%- * . . . . . . % . . % % " % ' • " . - . - " % . . - . , - % • - , , -.- j = =



.WW1

27

"4i*= 0.58 and thus indicates an asymptotic value for 'i * which is slightly less

"' than 0.5.

The distributions shown in Figs. 8 t'.'ough 10 reveal changes in the field

", variables as the flow proceeds cavity- by- cavity downstream. The axial velocity

distributions of Fig. 8 indicate that this quantity has become essentially streamwise

periodic within the third cavity. Even though Figs. 6 and 7 showed an almost linear

development of Wj , the detailed distributions in Fig. 9 show a significantly non-

linear rate of increase within the recirculation zone in the cavity region. The large

,.p. turbulent shear stress roe on the shaft gives rise to the shape of each radial profile

near the shaft. Finally, Fig. 10 shows the effect of radial turbulent diffusion on

turbulence energy development in the leakage region. This is most clearly shown

for the developing profile in the first cavity. Although not shown here, the radial

velocity profiles showed very little change.

The leakage Mach number increased from a value of 0.30 at the inlet of the

first cavity to 0.33 at the exit of the fifth. By locating Ali = 0.33 on Fig. 4, one

can determine that the 35x45 grid used for the swirl growth investigation was fine

enough to avoid grid independence problems.

The TOR results for the I 7 development shown in Figs. 11 and 12 are very

similar to those for the corresponding TOS cases. One important difference however,

is the much higher growth rate for the TOR case. The slow linear growth exhibited

in Fig. 12 indicates that TV7 is close to its asymptotic value which from these

predictions is apparently near 0.55. This result is somewhat different from that for

incompressible flow through a similar cavity by Rhode, et al. [31] indicating an

asymptotic 147i value of 0.65.

Figures 13 through 15 correspond to Figs. 8 through 10 for the TOS cases and

~ V
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most of the results are nearly identical to those for TOS. Major items of interest

again are approximate streamwise periodicity for axial velocity at the third cavity

and swirl profile development. One difference between corresponding TOS and TOR

-'2 cases is the swirl velocity profile in the leakage flow region. For the TOS case, Fig.

9 shows a larger 8, than does Fig. 14 for TOR. This is due to the fact that the

large shear stress r,.0 on the shaft acts on the leakage flow over the entire length

from cavity inlet to outlet for the TOS case.

Figure 16 clearly contrasts the faster swirl growth rate of TOR over TOS. This

leads to a higher asymptotic swirl velocity for TOR. Again, this is of significance

to designers interested in analyzing rotordynamic forces on the shaft.

0

,%-6

*1-.
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CLOSURE

A finite aifference computer program for predicting compressible, axisymmetric

flow in labyrinth seals was used in investigating cavity-by-cavity growth of swirl

velocity and leakage Mach number effect on grid independence. Due to a current

lack of experimental data from compressible flow labyrinth seals, the results of this

computational study cannot be verified.

The Fanno flow behavior computed herein for the compressible flow in labyrinth

seals is well known. The steady increase in Mach number from one cavity to the next

translates into a significant decrease in density and pressure. These in turn were

found to give rise to a considerable grid dependence sensitivity at Mach numbers

* above approximately 0.4. Furthermore, predictions for corresponding TOR and

*. . TOS cavity designs with the same flow area and leakage rate showed that the TOR

cavity had approximately ten percent greater dimensionless pressure drop than the

TOS cavity. Thus, for a given pressure drop the TOR cavity is expected to leak

less.

Several conclusions concerning the cavity-by-cavity flowfield development can

also be drawn from the predictions presented. For example, it was clearly shown

that the cavity-by-cavity swirl velocity development is fairly slow. It is anticipated

that these values will prove helpful to the developers of simple models for predicting

* the rotordvnarnic fluid forces on such seals when the rotor is eccentric relative to

the stator. Specifically, such previously unavailable values may serve as a swirl

development prediction test case for such models, as the forces are sensitive to

* swirl velocity. Moreover, the TOS seals develop swirl velocity at a considerably

slower rate than do TOR seals. This indicates that TOS seals are less likely to have

significant destabilizing fluid forces which drive the rotor in the detrimental whirling

9'.,
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motion. Thus, the greater leakage tendency of TOS seals offsets this advantage of

j slower swirl velocity development.

In addition, the prediction of cavity-by-cavity flow development for Mach

numbers near 0.3 indicates that, except for swirl velocity, most quantities are

essentially streamwise periodic after the second cavity.

'
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